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Abstract: We propose a method using observers to estimate unknown parameters and input disturbances affecting a
multi-rotor system. The test bench, subject to unmeasured external disturbances, consists of a drone body actuated by
two controlled motor-propellers, each influenced by its disturbances. Following an observability analysis, we design a
nonlinear observer for each actuator to estimate its constant drag coefficient, disturbances, and angular velocity, using
the motor’s current as the measurement. We then construct a linear observer to estimate the disturbances acting on the
yaw motion of the drone body, with the yaw rate as the measurement and the estimates from the actuators’ observers as
inputs. The drone’s observer is shown to converge when the actuators’ observers perform correctly. Simulation results
with realistic parameters illustrate the effectiveness of the proposed approach.
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1. INTRODUCTION

Multi-rotor drones find widespread applications across
various fields, ranging from aerial photography to civil-
ian and military [1]. However, in real-world scenar-
ios, drones are subject to not only known control inputs
but also different types of unknown inputs and distur-
bances [2]. Accurately estimating these unknowns is es-
sential for tasks such as robust controller synthesis and
disturbance rejection, enabling improved reliability and
performance. For instance, when the uncertainty involves
the actuators’ loss of effectiveness, several estimation
methods have been proposed [3, 4]. In this work, we con-
sider a test bench available at The University of Tokyo
(see Figure 1) that consists of a drone body and two actu-
ators that can be independently controlled to monitor the
pitch and yaw motions [2]. Here, we simplify the prob-
lem by locking the pitch motion and focusing solely on
yaw motion control. The primary goal of this work is to
build a disturbance observer to estimate:
• Unknown parameters and disturbances acting on each

actuator;
• Disturbances (e.g., wind forces, physical interactions)

affecting the drone as a whole.
One of the main challenges in this task is that the dynam-
ics of the disturbances are unknown, complicating the ob-
server design when treating the uncertainties as additional
states. To handle this, the descriptor system modeling [5]
has been shown to be effective for such problems. It
treats unknown inputs as algebraic variables rather than
dynamical ones, bypassing the need to know their exact
dynamics. This technique has been used in works such
as [6] in the fault estimation context. However, descrip-
tor modeling is generally limited to systems with linear
or linear-like structures and relies on specific rank con-
ditions associated with the system’s dynamics and output
matrices. An alternative approach, and the one adopted
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in this work, is to assume that the disturbances are slow-
varying or piecewise constant. Under this assumption,
disturbances can be modeled as additional states with
zero derivatives [7], provided they are detectable from
the extended system’s outputs. This approach has been
explored in studies such as [8, 9]. While straightforward
and computationally efficient, the assumption of slow-
varying disturbances may not always hold, particularly
for fast-varying inputs. Nevertheless, in this work, the
piecewise constant assumption is justified as a reasonable
simplification. We perform an observability analysis to
demonstrate that, under suitable conditions, the param-
eters and disturbances to be estimated are differentially
observable from the system outputs. This implies that
any abrupt changes in these unknowns are immediately
detected, allowing the observer to quickly correct its es-
timates. To achieve this, we propose a modular observer
scheme involving three observers: one for each of the two
actuators and one for the drone body. The drone’s ob-
server uses the estimates from the actuators’ observers as
inputs, enabling a hierarchical estimation strategy. In par-
ticular, this paper uses the angular velocities from the ac-
tuators’ observers to precisely estimate the yaw moment
input to the drone’s observer. This is an advanced and
novel idea in comparison with the traditional approaches,
which merely provide the drone’s observer with the yaw
moment command (i.e., from a motion controller). Trans-
parently, there always exists a difference between the real
and the command values, and this might degrade the ac-
curacy of unknown input observers at the drone level.
Our approach is validated through numerical simulations.
Note that a passivity-based estimation scheme has been
investigated for a simplified model of the actuator (ne-
glecting the motor inductance) in [10]. Thus, our pro-
posed scheme extends this work to include a more com-
prehensive model, incorporating additional system dy-
namics. Note that although the method has been devel-
oped and evaluated using a 2-propeller system, it can be



straightforwardly extended to any N -propeller system.
This is due to the fact that each global/local observer can
be designed independently.

2. PROBLEM FORMULATION
Consider a half-quadrotor test bench propelled by two

identical motor-propeller actuators, as illustrated in Fig-
ure 1. The dynamical model of each actuator, indexed by
q ∈ {1, 2}, reads:

L
diq
dt

= −Riq −Keωq + Vq, (1a)

Jl
dωq

dt
= Kmiq −Dlωq|ωq| − ξl,q, (1b)

where iq represents the current and ωq is the angular ve-
locity of motor q, and ξl,q denotes the unknown distur-
bance acting on it. We propose to use the motor current
as the measurement

yq = iq. (1c)

The parameters are identical for the two actuators and are
presented in Table 1. The constant drag coefficient Dl is
considered unknown and is to be estimated in this paper.

Remark 1. For system (1), note that it is possible to in-
stall an encoder to measure the propeller speed ωq . How-
ever, this significantly increases the system cost as well
as the actuator inertia. Therefore, we only use the current
measurement as in (1c). Note also that the controllers
Vq are designed independently to drive the drone’s angu-
lar position and velocity to a suitable reference trajectory,
following works such as [2, 11, 12]. In this work, we
assume these controllers are available and disregard any
possible dependence of the control inputs on the state,
treating them as exogenous inputs for observer design.
Future work will include feeding back the estimates for
more efficient control strategies.

The dynamical model of the drone body propelled by
the two actuators reads:

Jg
dω

dt
= −Dgω +Ng(ω1, ω2)− ξg, (2a)

where

Ng(ω1, ω2) = Sg(ω1|ω1|+ ω2|ω2|), (2b)

and the measurement is given by

y = ω. (2c)

The parameters for the drone model are presented in Ta-
ble 1.

Remark 2. In general, there are also disturbances to the
current dynamics (1a) and the disturbance/loss of effec-
tiveness in (2b), characterized by a coefficient in [0, 1].
This preliminary work only considers the disturbances
in (1b) and (2a).

Our objective in this paper is stated in Problem 1.

Problem 1. Design an algorithm that estimates (iq, ωq, Dl, ξl,q)
of system (1) (for each q ∈ {1, 2}), as well as (ω, ξg) of
system (2), from the available measurements.

Fig. 1 Test bench at the University of Tokyo: Dual motor-
propeller system with the wind tunnel to generate the
external disturbance.

3. OBSERVER DESIGN FOR THE
PROPELLED DRONE

3.1. Overall Strategy
To address Problem 1, a first naive approach is to

concatenate (1) (two times for both actuators) with (2)
into a single system and attempt to build an observer
for this. However, this would be impractical given the
nonlinearity and increased dimensions. Recognizing the
difficulty of estimating all parameters and disturbances
jointly, especially when the actuators interact with the
drone through inputs that can be estimated independently
(the velocities ωq), we propose the approach illustrated
in Figure 2, which is explained as follows. We construct
one observer for each actuator, which also estimates ωq ,
and one observer for the drone that sees ωq as an input.
Considering the ωq’s as inputs means that if these are
not effectively corrected by the actuators’ observers, then
the drone’s observer cannot work properly due to input
mismatch. However, by feeding the estimates ω̂q to the
drone’s observer which can be shown to exhibit input-to-
state stability (ISS) with respect to the unknown ωq’s, we
manage to correct this one asymptotically. Each observer
will also serve to estimate the corresponding unknown
disturbance. With this in mind, we transform Problem 1
into Problem 2 as follows.

Problem 2. Design:
• For each q ∈ {1, 2}, an observer that estimates
(iq, ωq, Dl, ξl,q) of system (1);

• An observer that estimates (ω, ξg) of system (2), treat-
ing (ω1, ω2) as known inputs.

To facilitate the design, we adopt the following com-
mon assumption on the disturbances, frequently used in
unknown input estimation schemes [7, 9].

Assumption 1. The disturbances ξl,q, q ∈ {1, 2}, and ξg
are piecewise constant, i.e., ξ̇l,q = 0 and ξ̇g = 0 over
intervals and with possible jumps at the intervals’ bound-
aries.

Remark 3. The piecewise constant disturbances can of
course make jumps at isolated instants. However, our



Table 1 Parameters of our test bench at The University of Tokyo (see Figure 1) [2]. Except for Dl which is assumed, the
other parameters are either provided by the motor production company or obtained using system identification.

Parameter Description Value Unit
L actuator inductance 1.16 · 10−3 H
R actuator resistance 8.4 Ω
Jl actuator inertia 4.40304 · 10−5 kg·m2

Ke coupling coefficient 0.042 Vs/rad
Km coupling coefficient 0.042 N·m/A
Dl drag coefficient 8 · 10−8 N·s2/(m·rad2)
Jg drone inertia 0.022 N·m·s/rad2

Dg damping coefficient 0.022 N·m·s/rad
Sg actuating coefficient 5 · 10−6 N·s2/(m·rad2)

System

Drone

Actuator 1 Actuator 2

ω1 ω2

Observer

“Local” observer 1 “Local” observer 2

“Global” observer

i1 i2

ω̂1 ω̂2

ω

ξ̂g

V1, ξl,1 V2, ξl,2ξg

V1 V2

Dl, ξ̂l,1 Dl, ξ̂l,2

Fig. 2 General scheme of observer design.

analysis later shows that these are differentially (or in-
stantaneously) observable from the measurements. This
means that any abrupt change in these disturbances is im-
mediately visible in the output and can then be corrected
by the (arbitrarily fast) observers.

In the following sections, we detail the design of the
observers outlined here.

3.2. Observer for Each Actuator
In this part, we design the observers for the actuators.

We start by analyzing the observability of system (1),
then propose suitable observers.

3.2.1. Observability Analysis
We begin by making the following assumptions for

each actuator.

Assumption 2. For each actuator described by sys-
tem (1), i.e., for each q ∈ {1, 2}, we assume that:

• The considered trajectories t 7→ (iq(t), ωq(t)), ini-
tialized in some bounded set and subject to consid-
ered bounded inputs t 7→ (Vq(t), ξl,q(t)), remain in
bounded sets at all times;

• The condition ωq(t)ω̇q(t) ̸= 0 holds for (almost) all
t ≥ 0.

In Assumption 2, the first item is generally satisfied
given the physical system. The second item, which
we later show to guarantee observability conditions,
can be satisfied if each actuator rotates and undergoes
accelerated/decelerated (e.g., at the lifting phase). It
is also related to the notion of persistence of excitation
usually exploited in parameter estimation (see for in-
stance [13, 14]). Lemma 1 then states the observability
of system (1).

Lemma 1. Under Assumption 1 and Assumption 2, for
each q ∈ {1, 2}, (iq, ωq, Dl, ξl,q) of system (1) are dif-
ferentially observable, i.e., these variables are uniquely



determined from (yq, Vq) and their time derivatives up to
a finite order.

Proof: The proof is the same for q ∈ {1, 2}.
We first get that iq = yq and from (1a), ωq =
1
Ke

(
−Riq − L

diq
dt + Vq

)
= 1

Ke
(−Ryq − Lẏq + Vq),

so that these are differentially observable. We also have
by derivating (1b), since Dl and ξl,q are both constant,

Jl
Ke

(−Rẏq − Lÿq + V̇q) = Kmyq −Dlωq|ωq| − ξl,q,

(3a)
Jl
Ke

(−Rÿq − L
...
y q + V̈q) = Kmẏq − 2Dlω̇q|ωq|. (3b)

Note that the time derivative of the term ωq|ωq|, which
is 2ω̇q|ωq|, is only defined when ωq ̸= 0, due to
the non-differentiability of the absolute value function
at zero. Under Assumption 2, we get from (3b) that

Dl =
Kmẏq−

Jl
Ke

(−Rÿq−L
...
y q+V̈q)

2ω̇q|ωq| and then from (3a)

that ξl,q = Kmyq − Jl

Ke
(−Rẏq − Lÿq + V̇q) −

Kmẏq−
Jl
Ke

(−Rÿq−L
...
y q+V̈q)

2ω̇q|ωq| ωq|ωq|. Since (ωq, ω̇q) are ex-
pressible in (yq, Vq) and their time derivatives, this con-
cludes the proof. ■

With Lemma 1 in mind, we know that we can con-
struct for system (1) a high-gain observer of dimension
four, which works when the angular velocity and accel-
eration are non-zero, such as in the transient phase when
the drone is being lifted up. This will however face a
problem whenever we enter the steady state, when ωq has
been driven to a constant reference making ω̇q near zero.
However, another observation is that Dl is constant and
can be well estimated in the transient phase when it is
observable; on the other hand, if we know Dl, ξl,q can
change as a step function of time and is still observable
even when ω̇q = 0. Therefore, we propose to build a se-
quence of observers as an observer for system (1). In the
transient phase, we use a four-dimensional high-gain ob-
server that estimates Dl very fast, and we switch to using
a three-dimensional observer with Dl sufficiently well es-
timated by the first one. These ideas will be presented in
the next part.

3.2.2. Observer Design for System (1)
Under Assumption 2, we propose the nonlinear change

of coordinates

z1 = iq, (4a)

z2 = −Ke

L
ωq, (4b)

z3 =
Ke

LJl
(Dlωq|ωq|+ ξl,q), (4c)

z4 =
2Ke

LJ2
l

Dl|ωq|(Kmiq −Dlωq|ωq| − ξl,q), (4d)

whose inverse is

iq = z1, (5a)

ωq = − L

Ke
z2, (5b)

Dl =
J2
l z4

2|z2|
(
Kmz1 − LJl

Ke
z3

) , (5c)

ξl,q =
LJl
Ke

z3 +
L2J2

l z2z4

2K2
e

(
Kmz1 − LJl

Ke
z3

) . (5d)

Note that (Dl, ξl,q) are defined only when

|z2|
(
Kmz1 −

LJl
Ke

z3

)
̸= 0,

which translates to |ωq|ω̇q ̸= 0 and is guaranteed by As-
sumption 2. This is coherent with the observability anal-
ysis in Lemma 1. With transformation (4), we obtain the
z-coordinates dynamics as follows

ż1 =
1

L
(−Riq −Keωq + Vq)

= z2 −
R

L
z1 +

1

L
Vq =: z2 + ϕ1(z1) +

1

L
Vq, (6a)

ż2 = − Ke

LJl
(Kmiq −Dlωq|ωq| − ξl,q)

= z3 −
KeKm

LJl
z1 =: z3 + ϕ2(z1), (6b)

ż3 =
2Ke

LJ2
l

Dl|ωq|(Kmiq −Dlωq|ωq| − ξl,q)

=: z4, (6c)

ż4 =
2Ke

LJ2
l

Dl|ωq|
(

1

Jlωq
(Kmiq −Dlωq|ωq| − ξl,q)

2

+
Km

L
(−Riq −Keωq + Vq)

− 2Dl

Jl
|ωq|(Kmiq −Dlωq|ωq| − ξl,q)

)
= −2Ke|z2|z4

LJlz2

(
Kmz1 −

LJl
Ke

z3

)
+

2|z2|z4
Kmz1 − LJl

Ke
z3

×

×
(
−KmR

L
z1 +Kmz2 −

LJl
Ke

z4 +
Km

L
Vq

)
=: ϕ4(z), (6d)

with the output

yq = z1. (6e)

We can then build a high-gain observer [15] for sys-
tem (6), which is of triangular canonical form. Saturation
of the observer maps during transient is necessary and is
possible under the first item of Assumption 2. Then, the
estimates of (iq, ωq, Dl, ξl,q) are recovered using (5).



Now, with Dl known, we perform the change of co-
ordinates from (iq, ωq, ξl,q) into (z1, z2, z3) (and not z4)
following (4), whose inverse is:

iq = z1, (7a)

ωq = − L

Ke
z2, (7b)

ξl,q =
LJl
Ke

z3 +
DlL

2

K2
e

z2|z2|. (7c)

With this transformation, we obtain the z-coordinates dy-
namics as follows

ż1 = z2 + ϕ1(z1) +
1

L
Vq, (8a)

ż2 = z3 + ϕ2(z1), (8b)

ż3 =
2Dl

J2
l

|z2|
(
Kmz1 −

LJl
Ke

z3

)
=: ϕ3(z), (8c)

with the output

yq = z1. (8d)

This takes the triangular canonical form and we can again
build for it a high-gain observer. Note that for (7), we do
not need the condition in the second item of Assump-
tion 2 to hold. Therefore, we propose to design an ob-
server for system (6) with inverse (5) to estimate Dl.
Then, since Dl is constant, we keep this value and de-
sign an observer for system (8), assuming Dl is known,
with inverse (7) to estimate ξl,q online.

3.3. Observer for the Drone
Now, let us design the observer for the drone (2). Be-

cause (ω1, ω2) are seen as inputs, we rewrite system (2)
as

ẋ = Ax+B(ω1, ω2), y = Cx, (9)

with state x = (ω, ξg), where A =

(
−Dg

Jg
− 1

Jg

0 0

)
,

B(ω1, ω2) =

(
Sg

Jg
(ω1|ω1|+ ω2|ω2|)

0

)
, and C =(

1 0
)
. Given the linear form and that (A,C) is observ-

able, we can find a constant gain Lo such that A − LoC
is Hurwitz. Then, a simple observer for system (2) takes
the form

˙̂x = Ax̂+B(ω̂1, ω̂2) + Lo(y − Cx̂), (10)

with (ω̂1, ω̂2) estimated by the actuators’ observers
(see Figure 2). We then deduce that the estimation error
x̃ := x− x̂ verifies

˙̃x = (A− LoC)x̃+B(ω1, ω2)−B(ω̂1, ω̂2). (11)

Combining the Hurwitzness of A − LoC with the fact
that (ω1(t) − ω̂1(t), ω2(t) − ω̂2(t)) → 0 as t → +∞
thanks to the actuators’ observers, we get that x̃(t) → 0
as t → +∞. Note that because the problem is linear,
unlike in Section 3.2, here we do not need to assume that
the state x remains in a bounded set.

4. SIMULATIONS

In this section, we provide simulation scenarios and
results to illustrate our methods. First, we propose a
simple experiment that can be performed offline to es-
timate the unknown parameter Dl, by designing a sim-
ple Proportional-Integral-Derivative (PID) control input
Vq that steers the current iq to a sinusoidal reference. This
controller keeps the velocity ωq from converging to a set-
tling value, though its derivative crosses zero from time to
time. Simulations in Figure 3 show effective convergence
outside of the non-observable instants (when ω̇q = 0).
Since Dl is constant, we can estimate this unknown pa-
rameter.

Fig. 3 Estimation of (i1, ω1, Dl, ξl,1) in an actuator (1)
using a four-dimensional observer.

With Dl known, simulations are performed where
(iq, ωq, ξl,q) for each actuator are estimated using a three-
dimensional high-gain observer. We consider ξl,q a vary-
ing step function of time. The inputs (V1, V2) are simple
PID controllers that serve to drive the drone’s angular po-
sition to a sinusoidal reference. From Figure 4, we see
that each time the disturbance changes, the observer no-
tices this change and corrects it immediately, thanks to
differential observability. Note again that this observabil-
ity does not require ω (or (ω1, ω2)) to satisfy any condi-
tion.
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Fig. 4 Estimation of (i1, ω1, ξl,1) in an actuator (1) using
a three-dimensional observer (with Dl estimated sep-
arately).

Last, we estimate the disturbance ξg in the test bench
using observer (10), with (ω̂1, ω̂2) provided by the actu-
ators’ observers. Because (ω̂1, ω̂2) come from the actua-
tors’ observers, we make an error whenever a new distur-
bance affects either motor. However, as seen in Figure 5,
the estimates will then be corrected immediately by the
observers.
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Fig. 5 Estimation of (ω, ξg) in the test bench (2) using
a simple observer (with (ω1, ω2) estimated separately
and treated as inputs).

5. CONCLUSION
In this paper, we present observer designs for esti-

mating unknown parameters and disturbances in a test
bench system comprising a drone body and two actu-
ators. Through observability analysis, we demonstrate
that these unknowns are differentially observable, poten-
tially under specific conditions. To achieve this, we de-
sign high-gain observers for each actuator and a simple
linear observer for the drone body, which utilizes the es-
timates from the actuator observers as inputs. The pro-
posed methods are validated through numerical simula-
tions.

Future work will focus on extending the estimation
framework to address other types of parameters and dis-
turbances within this system. Additionally, we plan to
design feedback controllers that leverage these estimates
to enhance the system’s performance and robustness. Ex-
periments on the test bench will also be performed.
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