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Electric vehicles are becoming more popular worldwide, not only for passenger vehicles but also for commercial
vehicles such as delivery trucks. The demand for extending the cruising range per charge is significant, and improv-
ing energy efficiency while driving is essential for delivery trucks in urban areas. This study proposes an ecological
adaptive cruise control method combining offline dynamic programming and online state feedback control to achieve
tracking performance and energy efficiency with a low computational burden. Offline dynamic programming generates
optimal speed trajectory considering road grade and cornering. The online state feedback controller considers the con-
straint from the preceding vehicle. Simulations show that the proposed method is more ecological than the constant
speed controller. In addition, actual vehicle experiments show that it is possible to achieve both tracking performance
and energy efficiency by tuning the weight of the state feedback controller.
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1. Introduction

Electrification of vehicles is progressing worldwide (1).
Electric vehicles are also appearing in delivery trucks. How-
ever, there is still the issue of electric vehicles’ cruising range
limitation. Delivery trucks are heavier than passenger vehi-
cles and have a large auxiliary power consumption, such as
refrigerators. Thus, improving driving energy efficiency is
essential to enhance practicality. On the other hand, elec-
tric vehicles have achieved advanced motion control by using
the high responsiveness of electric motors (2). Many control
methods have been proposed to improve energy efficiency,
including energy-efficient torque vectoring (3) (4), driving force
distribution (5), and optimal speed control (6) (7). Taking advan-
tage of the above characteristics, this study proposes an opti-
mal speed control method for battery electric delivery trucks
(EDT).

As for the optimal speed control of electric vehicles, there
are two types of research: optimal speed trajectory consider-
ing road shape (8) (9) and adaptive cruise control (7) (10). As for the
optimal speed trajectory considering road shape, several stud-
ies consider road grade and cornering (8) (9). However, they all
assume an environment with no surrounding vehicles. In the
case of adaptive cruise control, the prediction of the behav-
ior of the preceding vehicle and the real-time computational
burden are issues (11)∼(15). Most adaptive cruise controllers in
practical use are implemented by state feedback control and
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do not optimize for road geometry (16). There is research on
the quadrant dynamic programming that suppresses the com-
putational burden in adaptive cruise control. However, it
does not consider the optimization for road shape (7). In ad-
dition, optimizing the preceding vehicle and the gradient by
the model predictive control of the preceding vehicle follow-
ing has been studied (10). However, the issue of high real-time
computational burden remains.

To address the above issues, this study proposes an eco-
logical adaptive cruise control method combining dynamic
programming and state feedback control. The contribution
of this study is that the optimization for road shape before
driving and the real-time adaptive cruise control are realized
by dynamic programming and the state feedback control, re-
spectively. It suppresses the real-time computational burden
and realizes tracking performance and energy efficiency by
considering road shape. Moreover, this study considers and
uses the detailed EDT energy model containing the corner-
ing resistance, regenerative torque limitation, and motor ef-
ficiency maps. In the simulation, the energy consumption
of the proposed method is compared with that of constant
speed control. The simulation results confirmed that the pro-
posed method improves energy efficiency. Actual vehicle ex-
periments are conducted to evaluate the tracking and energy
performance when changing the weight of the state feedback
control. The results show that changing the weight of the
state feedback control can achieve the desired performance.

The remainder of this paper is organized as follows. In the
next section, we explain the energy model of EDTs. In the
third section, the problem setting is defined. In the fourth
section, the proposed method of the combination of dynamic
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Figure 1: Modeling of an EV with a rear on-board motor.

programming and state feedback control is clarified. In the
fifth and sixth sections, we validate the proposed method in
the simulation and actual vehicle experiments.

2. Modeling

2.1 Vehicle Dynamics The vehicle dynamics of the
EDT are modeled as shown in Fig. 1. The single-wheel
model is used and expressed by the following equations.

M
dv
dt
= F − FDR, (1)

where F, FDR, v, and M are the driving force, resistance
force, vehicle speed, and vehicle mass, respectively.

The resistance force is defined as the sum of air Fair, rolling
Froll, grade Fgrade, and cornering Fcorner resistance (9).

FDR = Fair + Froll + Fgrade + Fcorner (2)

Fair = cv2 (3)
Froll = µMg cos θ (4)

Fgrade = Mg sin θ (5)

Fcorner ≃
M2

2(lf + lr)2

 l2r
Cf
+

l2f
Cr

 v4R2 (6)

where c, µ, θ, lf , lr, Cf , Cr, and R are the air resistance and
rolling resistance coefficient, slope angle, distance from the
center of gravity to front and rear axle, cornering stiffness of
front and rear, and cornering radius respectively.

Considering the gear ratio and loss, the motor torque T and
speed ω are expressed as follows:

T =


rF
gegr

(v̇ >= 0)

gerF
gr

(v̇ < 0)
, (7)

ω =
grv

r
, (8)

where r, gr, and ge are the wheel radius, gear ratio, and trans-
mission efficiency, respectively.

2.2 Energy Model Motor torque, speed, and effi-
ciency maps are used for the energy model. From efficiency
maps of motor torque and speed as energy models, the energy
consumption is calculated by the product of the efficiency η
and output power ωT . Since the regenerative torque is lim-
ited at each motor speed Tmin(ω), the inverter input power Pin

is formulate as follows:

Pin =



η(ω,T )ωT (0 ≤ T )

ωT
η(ω,T ) (Tmin(ω) < T < 0)

ωTmin
η(ω,Tmin) (T ≤ Tmin(ω))

(9)

The energy consumption can be calculated by the vehicle
speed and acceleration from these vehicle dynamics and en-
ergy models.

3. Problem Formulation
This study assumes an environment where EDT follows

the preceding vehicle. The optimization focuses on the con-
straints from the preceding vehicle and road geometry and
does not consider other constraints, such as traffic signals. It
is assumed that the vehicle speed vf and position xf are ob-
tained from the vehicle Controller Area Network (CAN) and
GPS. The distance d between the preceding and target vehi-
cle is assumed to be obtained from the millimeter wave radar.
The preceding vehicle’s speed vp and position xf can be esti-
mated from the distance d and the own vehicle states (vf , xf).
Assuming that the operating route is determined before driv-
ing, offline optimization is implemented before driving, and
only the optimized results are given to the EDT.

4. Proposed Method
4.1 Overall System Figure 2 shows an overview of

the proposed method. An optimal speed trajectory is gener-
ated offline considering the road shape, such as road grade
and corner. While driving, the speed reference value is ob-
tained from the preceding vehicle’s speed and the vehicle’s
position. Finally, the motor torque reference is implemented
by state feedback control by using the two states of the speed
and distance.

4.2 Dynamic Programming Dynamic programming
discretized in speed, position, and time for offline opti-
mal speed trajectory generation considering road shape is
used (17) (18). The objective function uses total energy consump-
tion, which is expressed as the sum of the inverter input
power Pin and the auxiliary power α. The energy and mo-
tor torque are calculated from the obtained vehicle and en-
ergy model with the speed trajectory as a variable. The mo-
tor torque is limited by considering the regenerative torque
limit, and the acceleration constraint is also used to prevent
cargo collapse. The initial and terminal speeds are set to the
same constant value vcon as the preceding vehicle by select-
ing starting and ending points with no road grade or corner.
For tracking purposes, the time required within a section is
matched to the case of constant speed driving at vcon. In or-
der to cope with changes in the preceding vehicle’s speed,
dynamic programming optimization is performed for all pos-
sible vcon.

min
vf (k)

L∑
k=0

(Pin(k)∆t + α∆t) , (10)

s.t.: xf(k + 1) = xf(k) +
vf(k + 1) + vf(k)

2
∆t, (11)

a(k) =
vf(k + 1) − vf(k)

∆t
, (12)
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Figure 2: Overall control block diagram of the proposed system.

Figure 3: Generated optimal speed trajectory.

Tmin ≤ T (k) ≤ Tmax, (13)
amin ≤ a(k) ≤ amax, (14)
v(0) = vcon, v(L) = vcon, L = d/vcon (15)
Eqs. (1), (7) − (9). (16)

Figure 3 shows the generated optimal speed trajectories at
each constant speed vcon from 4 m/s to 9 m/s.

4.3 Online Reference Generator For speed refer-
ence, the optimal speed at each point in the two-dimensional
plane of the preceding vehicle’s speed and own vehicle’s po-
sition is obtained by interpolating the optimal speed trajec-
tory for each preceding vehicle’s speed vcon obtained by dy-
namic programming. While driving, the preceding vehicle’s
speed and the vehicle’s position are input into the generated
map to obtain the optimal speed as a speed reference.

To maintain the time between vehicles, distance reference
is determined by the preceding vehicle’s speed and the mini-
mum distance dmin.

dre f = 2vp + dmin (17)

4.4 State Feedback Control State feedback control
is used to suppress the real-time computational burden. The
states are the speed and the distance between the preceding
vehicle. The output of the state feedback control is the ac-
celeration, and when converting the acceleration to the motor
torque, the resistance force and transmission loss are ignored,
and the gear ratio, radius, and vehicle weight are used to de-
termine the motor torque.

a∗ = Kv(vre f − vf) + Kd(d − dre f ) (18)

T ∗ = a∗
rM
gr

(19)

Figure 4: Verification EDT (eCanter).
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Figure 5: Verification roads.

5. Simulation

5.1 Simulation Setup In the simulation and experi-
ments, eCanter is used as the verification vehicle, as shown in
Fig. 4. eCanter is an EDT manufactured by Mitsubishi Fuso
Truck and Bus Corporation. The road conditions for verifica-
tion are shown in Fig. 5. The gradient can be ignored due to
the constraints of the experiment site, and the road shape con-
sists only of straight and turning. The straight is 150 m, and
the turning is a circular arc with a radius of 15 m. The vehi-
cle enters the straight section after reaching the same constant
speed as the preceding vehicle and runs a route consisting of
straight-turn-straight. The speed is set to be the same at the
start and end points.

For the validation of the proposed method, the comparison
between the proposed method Kd = 0.01, Kv = 0.3 and the
constant speed control when the preceding vehicle runs at a
constant speed of 6 m/s is performed. In the simulation, the
acceleration is controlled by the speed controller until both
vehicles reach 6 m/s, and the proposed control is started after
the speed of the preceding vehicle and the target vehicle are
both constant at 6 m/s.

5.2 Simulation Results Figures. 6(a) and 6(b) show
the vehicle speed and trajectories of the preceding and target
vehicles. Figs. 6(c), 6(d), 6(e), and 6(f) show the distance
between the preceding vehicle and the target vehicle, motor
torque, motor power, and energy consumption trajectories.



(a) Speed. (b) Trajectory.

(c) Distance. (d) Motor Torque.

(e) Power. (f) Energy.

Figure 6: Simularion results. Comparison of power consumption and tracking performance between the proposed method and
the method with constant speed trajectory.

The vehicle starts to turn at 150 m after 36 m accelera-
tion and 150 m straight section, and the proposed method re-
duces energy consumption by decelerating (Figs. 6(e) and
6(f)). Using the proposed method, the vehicle accelerates in
a straight line after the corner to reduce the distance between
vehicles. Due to the high weighting of speed in the state
feedback, the speed reference value is highly tracked, while
the distance between vehicles is highly variable, as shown in
Figs. 6(a) and 6(c).

6. Real Vehicle Experiments

6.1 Experimental Setup In the actual vehicle exper-
iments, eCanter is used. The experiment was conducted with
the eCanter in an empty state, and the proposed controller
is implemented in the dSPACE MicroAutoBox. The motor

torque reference is sent from the MicroAutoBox to the ac-
tual vehicle experiment by CAN communication every 10 ms.
The energy consumption is measured from vehicle CAN. The
road conditions are the same as in the simulation, and a hu-
man driver operates the steering to follow the existing white
line at the test site.

For comparison, the gains of the state feedback controller
change as shown in Table 1. We compare these three cases
to compare the effectiveness of the state feedback. Case 1 is
balanced with the distance and speed tracking. Case 2 em-
phasizes the distance, and Case 3 focuses on speed tracking.

6.2 Experimental Results Figures 7(a) and 7(b)
show the vehicle speed trajectories of the preceding and tar-
get vehicles of all three cases. Figs. 7(c), 7(d), 7(e), and



(a) Speed. (b) Trajectory.
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Figure 7: Experimental result. Comparison of behavior at different state feedback gain Kv and Kd.
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Figure 8: Average energy consumption comparison of three
cases.

Table 1: Verification cases in experiments.
Case Description

1 Kd = 0.3, Kv = 0.3
2 Kd = 0.3, Kv = 0.1
3 Kd = 0.1, Kv = 0.3

7(f) show the distance between the preceding vehicle and the
target vehicle, motor torque, motor power, and total energy
consumption of three cases.

In Case 3, where the speed weights are more significant,
the distance between vehicles fluctuates more. However,
the energy consumption is minimal. In Cases 1 and 2, the
weights of distance are large. Even though energy consump-
tion is large, they show good tracking performance compared
to the preceding vehicle.

Figure 8 shows the average energy consumption of the



three cases. It is confirmed that Case 3, which has the highest
weight for following the speed reference value from dynamic
programming, has the lowest energy consumption.

7. Conclusion
This study proposed an ecological adaptive cruise control

system that combines dynamic programming and state feed-
back control. Offline, the optimal speed trajectory is gen-
erated considering a detailed energy model, including cor-
nering resistance, and online, state feedback control is pro-
posed to adjust energy consumption and following perfor-
mance easily according to the driver’s preference and sit-
uation. Simulation and actual vehicle experiments showed
that both tracking performance and energy efficiency can be
achieved by weighting the state feedback control. It is also
confirmed that energy consumption can be reduced compared
to constant speed when energy is emphasized by the proposed
method.

Future work will include verification of the effectiveness
of both cornering and road grade. We would also analyze the
stability of the closed loop system, discuss the string stabil-
ity for safety, and propose optimization methods, including
traffic signals that could not be considered in this proposal.
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