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Abstract – This paper presents a novel driving force control 

(DFC) strategy for electric vehicles driven by multi-motors. The 

proposed system is designed hierarchically, with driving force 

control in the outer-layer, and wheel speed control in the inner-

layer. Notably, the outer-layer controller directly outputs the 

wheel speed references. This configuration does not requires the 

vehicle speed to calculate the wheel speed as the traditional DFC, 

thereby reducing system complexity. Moreover, this paper shows 

that the proposed system can be modelled as a multi-agent system 

with generalized frequency variable and a physical interaction 

matrix of rank-1. This allows us to guarantee the stability of the 

total system (global) with respect to the actuator dynamics (local). 

In particular, this paper establishes a D-stability condition, which 

is independent of the number of motor actuators. The proposed 

strategy is applied to range extension control via energy 

optimization by driving force distribution and control. 

Keywords – driving force, electric vehicle, in-wheel-motor, 

generalized frequency variable, range extension control. 

I. INTRODUCTION 

Thanks to the merits of motor actuator, motion control of 
electric vehicles (EVs) driven by multi-motor (Fig. 1) has been 
an active research field for years [1]. Typical examples are direct 
yaw moment control [2]-[3], energy optimization control [4]-[5], 
and vibration suppression [4]. This paper focuses on driving 
force control (DFC) [6]-[10], which has been shown an 
advanced traction method to generate the friction force between 
the tire and the road surface. The classical DFC is system is 
hierarchical, including the outer-layer force control and inner-
layer wheel speed force. The DFC can effectively collaborate 
with the higher motion control layers, such as yaw-rate control 
[11]. To continuously develop and extend the applications of 
DFC, the following two issues need to be concerned. 

The first issue is from an application point of view. In the 
classical DFC, the outer-layer is to generate the slip ratio 
reference signal 𝑦∗. Therefore, the vehicle speed is required to 
calculate from 𝑦∗  the wheel speed reference. However, the 
vehicle speed sensor is of high cost, and it is not affordable for 
the commercial vehicles. The implementation of speed 
estimation algorithm will increase the complexity of the system 
design and analysis. In addition, any error in vehicle speed 
estimation will degrade the DFC performance. 

The second issue is from a theoretical point of view. We 
consider an N-wheel-EV. Each wheel is provided with a local 
DFC. As discussed in [1] and [12], the multi-motor EV must be 

considered as multi-agent system, in which each controlled 
wheel is a local agent. The local agents interact with each other 
through the vehicle body. Thus, it is essential to guarantee the 
stability of the total system (global) with respect to the actuator 
dynamics (local). However, the glocal (global/local) stability 
analysis has not yet been developed for DFC of multi-motor EVs. 

With respect to the above issues, this paper is to present a 
novel strategy to DFC for multi-motor EVs. The strategy 
consists of a new control configuration, and a theoretical 
background to system analysis. Unlike the traditional DFC, the 
outer-layer force controller directly give the wheel speed 
reference. Furthermore, this paper shows that although the total 
system is quite complex, it can be represented as a multi-agent 
system using generalized frequency variable (GFV) [13]. 
Thanks to the GFV and the rank-1 matrix that representing 
physical interaction between the agents, the complexity of 
stability analysis is always the same, no matter what the number 
of motors installed to the vehicle body. In particular, this paper 
derives the D-stability condition for the proposed DFC. 

This paper is to extend our recent study on wheel speed 
based DFC [10]. In this previous work, by using Circle criterion, 
the absolute stability analysis with respect to the wheel speed 
limiter was proposed. However, system design and evaluation 
were only performed using a single wheel model. Modeling and 
analyzing the DFC system for multi-motor EVs is still an open 
question. 

The rest of this paper is organized as follows. Section II 
describes the vehicle dynamics. Section III presents the 
proposed DFC system. The glocal stability analysis and D-
stability condition are established in Section IV. Application of 
the proposed system to range extension control is presented in 
Section V. Finally, the conclusion is stated in Section VI. 

   

  (a) 4 in-wheel-motor vehicle FPEV-2.         (b) 4-mecanum-wheel-vehicle. 

Fig. 1. Multi-motor vehicles at our research group. 



II. MODELING 

This paper examines the longitudinal motion of the EV 

driven by in-wheel-motor (IWM), as illustrated in Fig. 2. We 

let 𝑚 be the vehicle mass; and 𝑣𝑥 be the longitudinal speed of 

the vehicle. The rotational speed of the wheel is 𝜔𝑖. Assuming 

that the wheels are physically homogeneous, we let 𝐽𝑤 and 𝑟 

be the moment of inertia and the radius of all wheels, 

respectively. 𝑇𝑖 , 𝐹𝑖 , and 𝑍𝑖  represent the motor torque, the 

driving force, and the vertical force acting at the wheel, 

respectively. 𝐹𝜉 is the disturbance force exerted on the vehicle 

body. As depicted in Fig. 2(b), the motion of a wheel is: 

( )/w i i iJ d dt T rF = −   (1)  

Let ε be a small positive number to avoid division-by-zero, 

the slip ratio 𝜆𝑖 is defined as 
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The driving force Fi can be expressed as 

( )i i iF f =  (3)  

where 𝑓𝑖( ) is commonly described by the magic formula [14]. 

Besides, the longitudinal motion of the vehicle body is: 
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where 𝐹 represents the disturbance (air resistance, road slope); 

1N is the all-one-column vector of size N; and F is the vector 

which includes all local driving forces. 

III. PROPOSED DRIVING FORCE CONTROL SYSTEM 

This paper investigates the system in Fig. 3 where the EV 

plant includes N subsystem {Wi} interconnected via V - the 

vehicle body dynamics model. T and 𝛚 are the vectors of size 

N which include the motor torques and the local speeds of the 

wheels. 𝐼𝑁 represents the identity matrix of size 𝑁.  𝐹𝑎𝑙𝑙  is the 

total driving force command which can be given by the driver, 

or the higher control layer. From (1), the driving force observer 

(DFO) is established as 

1ˆ ( ) w
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J
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where the transfer function of the low-pass filter is 

1( )
1

Q s
s

=
+

 (6)  

Each wheel is provided with a force controller 𝐶𝑓(𝑠) and a 

wheel speed controller 𝐶𝑤(𝑠). A Force Distribution Law (FDL) 
is to distribute 𝐹𝑎𝑙𝑙

∗  to the driving force reference vector 𝐅∗. 

Notice 1: This paper focuses on the stability analysis of the 
driving force control system in Fig. 3. The algorithm to 
determine the maximum allowable wheel speed reference is not 
considered, as it is not the main goal of this paper. 

IV. GLOCAL STABILITY ANALYSIS 

The system in Fig. 3 can be seen as multi-agent system in 

which the local agent consists of the wheel dynamics Wi, the 

force controller 𝐶𝑓, the speed controller 𝐶𝑤, and the local DFO. 

The local agents are diagonal, and they “interact” via the 

“aggregation” vector 𝟏𝑁
T , the vehicle dynamics V, and the 

“distribution” vector 𝟏𝑁. Thus, it is possible to represent the 

system in Fig. 3 by the feedback connection of two parts. The 

first part is an interaction matrix, which is the multiplicity of 

the distribution and aggregation matrix. The second part is 

calculated based on Wi, V, 𝐶𝑓, 𝐶𝑤, and the DFO. Note that, only 

Wi contains the nonlinearities of the slip ratio definition (2) and 

the force model (3). Thus, a strategy to system analysis is to 

linearize (2) and (3). To this end, we examine the proposed 

DFC at an operating point OP = {𝜔𝑜,1, … , 𝜔𝑜,𝑁 , 𝑣𝑥𝑜 }. The 

following assumptions are considered: 

(i) The vehicle operates on the uniform road condition and 

the friction coefficients of four wheels are the same.  

(ii) The slip ratio is small, and the driving force is linearized 

as 𝐹𝑖 = 𝑆𝑛𝜆𝑖 where Sn is the nominal driving stiffness.  

(iii) At the operating point, the values of max{𝑟𝜔𝑜,𝑖 , 𝑣𝑥𝑜 , 𝜀} 

are almost the same. In other words, we might approximate: 
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A. A linearized modelling of DFC system 

With respect to the assumptions (i) ~ (iii), the driving force 

can be linearized as 

i eqn iF S =  (7) 

where eqn n nS S= , and i i xr v = − .                                                           

Neglecting the input disturbances, the system in Fig. 3 can 

be linearized as the system in Fig. 4(a) where A = 𝟏𝑁𝟏𝑁
T  and: 
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                         (a) Vehicle body.                                           (b) Wheel.                                                   

Fig. 2. N-wheel-EV model under study. 
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Fig. 3. Block diagram of the proposed driving force control system. 
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For the purpose of stability analysis, the Force Distribution 
Law, which only generates the reference forces, is not 
considered. The system in Fig. 4(a) can be represented as the 
system ∑(𝐻(𝑠), A) in Fig. 4(b) with: 

2
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eqn eq w g

eq w eqn w
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H s
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+ +
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Notice 2: ∑(𝐻(𝑠), A) is a multi-agent system with the local 
dynamics 𝐻(𝑠) and the physical interaction matrix A of rank-1. 
In other words, matrix A has 𝑁 − 1 zero eigenvalues, and one 
non-zero eigenvalue which equals to −𝑁. 

B. Stability analysis 

The system in Fig. 4(b) is stable at O if and only if 

( ) 1 0iH s s +−      (11)  

holds true for all eigenvalues i  of matrix A. Following the 

generalized frequency variable (GFV) theory [13] with respect 

to Notice 2, the condition (11) is satisfied if the point (−𝑁, 0) 

is located in the stable domain Ω+
𝑐  defined as:  

( ): , : \c+ + + + =  = C  C  

where (𝑠) = 𝐻−1(𝑠)  is the GFV. However, the stable 

condition is not enough. To address the damping ratio and 

convergence rate rather than just guaranteeing the stability, it is 

essential to analyze the D-stability. One of typical D-stability 

region useful for the practical application of IWM-EV is 

illustrated in Fig. 5. Define the half-plane as 

( ) , : : Re 0js e s

  −=  + C C  (12)  

As depicted in Fig. 5, region D is constructed by the 

intersection of four half-planes. In other words, we have: 

=D
1 20, 0, ,0 ,0   −  C C C C  

where 0 < θ < π/2 and 0 < |α1| < |α2|. We notice that , C  is 

derived by rotating −C by an angle −𝛽  counterclockwise 

around the origin and shifting the resulting region by α in the 

direction of the real axis. Therefore, all the poles of 

∑(𝐻(𝑠), A) belong to , C  if all the eigenvalues of matrix A 

are located in the domain ( ), C  which is established by 

applying the extended Routh-Hurwitz criterion to the GFV  in 

which “s” is transformed into “e-jβs + α”. An algorithm to 

derive ( ), C  can be referred to the Appendix A, B, and 

C of Ref. [13]. The D-stability condition is stated as follows. 

D-stability condition: The DFC system is D-stable at an 

operating point OP if H(s) is D-stable and two points (−𝑁, 0) 

and (0, 0) are located in the domain defined as 

( ) ( ) ( ) ( )1 20, 0, ,0 ,0    =   −  C C C C . 

V. DEMONSTRATION OF THE PROPOSED STRATEGY 

This paper utilizes the 4-wheel EV shown in Fig. 1(a). The 
main parameters of the vehicle are summarized in Table 1. As 
an example, we will design the force and speed controllers of the 
proportional integral (PI) type: 

( ) , ( )
Pf If Pw Iw
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C s C s

s s
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A. System design and analysis 

Substituting (13) into (10), we have: 
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Following Theorem 1 in [13], the domain 
c

+  is obtained by 

firstly defining the polynomial: 
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(a) Representation of the original DFC system by linearizing wheel dynamics. 
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(b) Equivalent expression for glocal stability analysis. 

Fig. 4. Linearized expression of the DFC system. 
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Then, c

+  is obtained by a set of inequality {Dk > 0} which 

is calculated as 

1 1

1
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UF F −

 =


− 
= = 

 

p q
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                     (16)          

where the vectors 𝐩𝑘, 𝐪𝑘, and the matrices R, U, F can be found 

in [13].  Notice that in the procedure (16): pi = qi = 0 if 𝑖 > 4. 

Considering the 4-in-wheel-motor EV, we have N = 4 and 

matrix A has one non-zero eigenvalue which is placed at 

(−4, 0). The region D is specified by a set of parameters θ = 

2π/3, α1 = 2, and α2 = 30. By a fine-tuning process with pole-

placement to the closed-loop system including 𝑃𝑤(𝑠)  and 

𝐶𝑤(𝑠), the speed controller is selected with 𝐾𝑃𝑤 = 50.48 and 

𝐾𝐼𝑤 = 504.76. The time constant of the DFO’s low-pass filter 

is chosen as 𝜏 = 0.03 [𝑠]. The force control gains are selected 

as 𝐾𝑃𝑓 = 0.02 and 𝐾𝐼𝑓 = 2.00. 

This paper examines the operating point with 𝑣𝑥𝑜 = 5 [m/s], 

and the vehicle runs on a high friction surface with the nominal 

friction coefficient μ = 0.8. It is assumed that a small slip ratio 

of 0.05 is maintained constantly when the vehicle velocity 

changes between 𝑣𝑥𝑜 −Δ𝑣  and 𝑣𝑥𝑜 +Δ𝑣  where Δ𝑣  = 2 

[m/s]. Applying the D-stability condition in the previous 

Section, the stable regions given by the GFV at 𝑣𝑥𝑜, 𝑣𝑥𝑜 −Δ𝑣 

and 𝑣𝑥𝑜 +Δ𝑣 are plotted as the shaded regions in Figs. 6(a), 

(b), and (c), respectively. Transparently, the system has enough 

stability margin and the points (−4, 0) and (0, 0) are always 

placed in such shaded regions. This shows that the above 

controller design guarantees the D-stability of the DFC system. 

B. Experimental evaluation of driving force control 

To evaluate the tracking performance of the proposed DFC, 
experiment was conducted at our test course in Kashiwa Campus, 
the University of Tokyo. The vehicle was accelerated with a 
driving force command equally distributed to each wheel. The 
experimental results of the vehicle speed and wheel speed are 
shown in Fig. 7(a). The driving force reference of 700 [N] and 
the actual driving force are shown in Fig. 7(b). For the sake of 
clearness, we only described the data of the rear left wheel. Test 
results confirm that the vehicle was smoothly accelerated and 
the actual driving forces successfully follow the reference value.  

For comparison, driving force control using a simple 
feedforward strategy was also performed. This means the motor 
torque was directly generated from the reference as 𝑇𝑖 = 𝑟 × 𝐹𝑖

∗. 
As shown in Fig. 7(c), the feedforward force control suffers a 

large tracking error. Thus, it is necessary to utilize feedback 
force control strategy for the goal of accurate force distribution. 

C. Application to range extension control 

Our research group has developed the range extension 
control system (RECS) for optimizing the use of electric energy 
[15], [16]. To this end, the motor torques are distributed by 
minimizing the total of motor input power. However, the 
previous studies did not examine the accurate force allocation. 
This paper extends the original idea of RECS by utilizing the 
proposed DFC.  

The ith motor output power is 𝑃𝑜𝑢𝑡,𝑖 = 𝜔𝑖𝑇𝑖 . From (2), the 

motor speed can be approximated as 𝜔𝑖 ≈ 𝑣𝑥(1 + 𝑖)/𝑟 . As 
discussed in the previous Section, the driving force is linearized 

 
(a) Stable domain plotted at 𝑣𝑥𝑜. 

 
(b) Stable domain plotted at 𝑣𝑥𝑜 −Δ𝑣. 

 
(c) Stable domain plotted at 𝑣𝑥𝑜 +Δ𝑣. 

Fig. 6. D-stability at different operating points. 

Table 1. Specifications of the experimental vehicle. 

Symbol Description Value 

𝑚 Vehicle mass 925 kg 

𝐽𝑤 Wheel radius 0.302 m 

𝑟 Wheel moment of inertia 1.26 kg.m2 

− Front motor’s maximum torque 500 N.m 

 Front motor’s maximum power 20.0 kW 

− Rear motor’s maximum torque 340 N.m 

− Rear motor’s maximum power 10.7 kW 

 



as 𝐹𝑖 = 𝑆𝑛𝜆𝑖. From the vehicle dynamics equations (1) ~ (4), the 
relationship between the motor torque and the driving force can 
be approximated as 𝑇𝑖 ≈ 𝑟𝑒𝑞𝐹𝑖 where 𝑟𝑒𝑞 = 𝑟 + 𝑁𝐽𝑤/(𝑟𝑚). Let 

𝑘𝑖  be the force distribution ratio (𝑘1 + ⋯ + 𝑘𝑁 = 1, 0 < 𝑘𝑖 <
1), the motor output power is approximately expressed as 

,

,

1x i all

out i eq i all

s i

v k F
P r k F

r D

 
= + 

 
 (17)  

The EV in Fig. 1(a) is driven by permanent magnet 
synchronous motor (PMSM). Using the motor parameters 
summarized in [15], it is reasonable to assume that the d-axis 
currents are maintained small. Based on the equivalent circuit of 
the PMSM [17], the copper-loss and iron-loss powers are 
derived as follows: 

2 2

, , ,

, ,

, , , , ,
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cu i a i

c i a i n i a i c i

k r F k r Fv L p v
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 (19)  

where the armature winding resistance and the iron loss 
resistance are 𝑅𝑎,𝑖 and 𝑅𝑐,𝑖, respectively.  𝐿𝑑,𝑖 and 𝐿𝑞,𝑖 are the d-

and q-axis components of the armature self-inductance, 
respectively. The number of poles pairs is 𝑝𝑛,𝑖, and the motor 

salient coefficient is 𝜌𝑖 = 𝐿𝑞,𝑖/𝐿𝑑,𝑖. Let 𝑒,𝑖 be the flux linkage 

of the permanent magnet per phase, we have 𝑒,𝑖 = √3𝑒,𝑖. 

In summary, the optimization problem of the Force 
Distribution Law is expressed as: 

 
 

( ), , ,

1 1

min   s.t. 1,0 1
i

N N

out i cu i fe i i i
k

i i

P P P k k
= =

+ + =     (20)  

From (17) ~ (19), the cost function in (20) is shown to be a 
quadratic function of 𝑘𝑖 . Thus, giving the total driving force 
command 𝐹𝑎𝑙𝑙  and the vehicle speed 𝑣𝑥 the optimal distribution 
gains can be obtained in real-time without special difficulty. 

The setting of the range extension control test is shown in 
Fig. 8 where Fig. 8(a) describes the speed pattern, and Fig. 8(b) 
describes the change of road friction coefficient in the 
longitudinal direction. Three test cases were performed for 
comparison. 

• Case 1: The vehicle is controlled by the proposed DFC 
system. However, the driving force distribution ratios 
are fixed at some values. For instance, the distribution 
ratios of the front and rear wheels are 0.5(1 − 𝑞) and 
0.5𝑞, respectively. The value 𝑞 is selected as a number 
in the set {0.0, 0.1, 0.2, …  0.9, 1.0}. 

• Case 2: The RECS [15] is utilized. This method can be 
seen as a feedforward driving force control. The motor 
torque is distributed to minimize the total of motor 
input power. 

• Case 3: The proposed DFC system is utilized with the 
force distribution law (20). Note that, the local DFC of 
each wheel is provided with a wheel speed limiter, 
which was presented in our recent work [10].  

The energy consumptions of the vehicle in the above test 
cases are summarized in Fig. 9. By varying the force distribution 
ratio, the energy consumption of Case 3 is smaller than Case 1 
for any fixed ratios 𝑞. On the other hand, the feedforward force 

 
(a) Vehicle speed and wheel speed. 

 
(b) Driving force. 

 
(c) Comparison of force tracking error. 

Fig. 7. Experimental results of wheel speed based DFC. 

 
(a) Vehicle speed pattern. 

 
(b) Map of road friction coefficient. 

Fig. 8. Setup of range extension control test. 



control based RECS in Case 2 cannot prevent the wheel slip due 
to the change of road friction coefficient. Although Case 2 
distributes the motor torques by minimizing motor input power, 
its energy consumption is much bigger than Case 3, and Case 1 
with the selection of 𝑞 = {0.4, 0.5, 0.6, 0.7}. 

VI. CONCLUSIONS 

Based on GFV theory, this aper generalizes the wheel speed 

based DFC, and improves the stability condition which was 

presented in [10]. It clarifies that IWM-EVs should be treated 

as multi-agent systems with rank-1 physical interaction. The 

modelling of this paper, therefore, can be utilized to design 

other motion control systems for multi-motor vehicles, 

including the mecanum-wheel-robots in Fig. 1. In future study, 

the D-stability test can be improved to address the variation of 

the driving stiffness and the uncertainties of physical 

parameters, such as vehicle mass and wheel inertia. The 

proposed DFC is shown to be a promising framework for 

energy optimization of electric vehicle. Experiments of the 

proposed method under road condition change will be 

performed for further discussion and evaluation. 
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