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Abstract— Driving force control (DFC) has been shown as a
successful method for improving the safety and comfort of in-
wheel-motor electric vehicles (IWM-EVs). However, DFC for
on-board motor (OBM) EVs faces many challenges due to
the complexity and parameter uncertainty of the powertrain
system, which includes gear, differential, and drive shaft.
Aiming to solve the aforementioned issues, this paper presents a
new DFC system for OBM-EVs with the force controller in the
outer loop, and the motor speed controller in the inner loop. To
achieve phase stabilization, the proportional-integral-derivative
(PID) controller with a phase lead compensator is proposed
for the inner loop. By integrating disturbance observer and
least square algorithm, a novel adaptive driving force observer
(A-DFO) is proposed to simultaneously estimate the driving
force and the viscous friction coefficient of the drivetrain. A
hardware-in-the-loop (HIL) experiment is introduced to show
that it is possible to design DFC for OBM-EVs using IEM-
EVs. Numerical simulations and Hardware-in-loop experiments
show that the proposed system can accurately estimate and
control the driving force. Especially, the tracking errors and
vibrations are remarkably reduced in comparison with some
existing control approaches.

I. INTRODUCTION

The high environmental performance of electric vehicles
has garnered significant attention with the progress of motor
drive systems [1]. Recent advancements in energy estima-
tion [2] and the range extension autonomous driving [3], [4]
have mitigated the short mileage per charge, which is a weak-
ness compared to hybrid electric vehicles[5]. Furthermore,
in comparison to internal combustion engines, motors have
a much faster torque response, and the actual torque can be
accurately measured. These merits enable the development
of advanced motion control such as chassis control [6] and
vibration suppression [7]. The focus of this paper is safe and
comfortable driving force generation for OBM-EVs.

Several related concepts have been proposed to safely
generate the driving force for in-wheel-motor EVs (IWM-
EVs). They are classified as anti-slip control (ASC) [8], slip
ratio control (SRC) [9], and driving force control (DFC) [10].
ASC employs a disturbance observer-based controller. Due
to its rough configuration, it is impossible for ASC to achieve
the desired driving force accurately. On the other hand, SRC
directly manipulates the slip ratio. It is hard to integrate
ASC with other higher-layer motion controllers. Utilizing a
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cascade configuration with force control in the outer-loop and
motor speed control in the inner-loop, DFC can accurately
track the driving force with the desired value. However, DFC
has been mainly developed for IWM-EV.

Extending the DFC from IWM-EVs to OBM-EVs is a
challenging task. In the case of IWM-EV, DFC design is
straightforward due to the fact that the drivetrain can be
modeled by an inertia term. As the inertia can be known pre-
cisely, the driving force can be estimated accurately from the
motor torque, motor speed, and the disturbance observer [10].
Besides, good performance of the inner-loop can be attained
even with a proportional-integral (PI) speed controller, the
poles of the closed loop system can be placed at the desired
position. In contrast, the drivetrain from a motor to tires of
OBM-EVs is a complex plant, which is usually modeled as a
two-inertia system [11], [12]. Generally, the resolution of the
wheel speed sensor is smaller than the encoder of the motor,
and it is necessary to estimate the driving force and control
the speed using the motor angular speed. The plant is a third-
order plant that takes inertias and frictions into account, and
the pole arrangement cannot be done by a PI controller [11],
so a higher-order controller is required. The bandwidth of
the controller is limited by the resonance frequency of the
plant, thus the feed-forward (FF) controller is used to reduce
the tracking error in [11]. However, this method needs a
precious nominal model. For driving force estimation, inertia
alone cannot estimate the driving force. Loss due to viscous
friction leads to an estimation error [11]. Other recent studies
have not considered viscous friction or frequency response
of the drivetrain of OBM-EVs when designing traction
control [13], [14]. However, it is imperative to incorporate a
comprehensive drive train model into the design.

To overcome the issues above, this paper focuses on adapt-
ing DFC to OBM-EV. Especially, the proposed controller im-
proves the tracking performance of the speed controller and
the estimation accuracy of the driving force observer (DFO)
which are issues in [11]. As for a motor speed controller,
the phase lead compensator is added to the conventional PI
controller, and a high order controller with PID controller
and phase lead compensator is proposed to increase a phase
margin based on the frequency response obtained by the two-
inertia model. Furthermore, to improve the accuracy of the
driving force estimation, viscous friction is introduced into
conventional DFO, and sequential estimation of both the vis-
cous friction coefficient by recursive least square (RLS) and
the driving force by the state observer is proposed. Finally,
we show that IWM-EVs, which have an ideal drivetrain with
no nonlinear components, are effective in designing DFC for



v

F

M

Jω

ωL

r
N

Fd

(a) Vehicle model. (b) Drivetrain model.

Fig. 1. OBM-EV Drivetrain with a differential gear and drive shafts.

OBM-EVs. The proposed method is evaluated using a novel
HIL experiment system, in which the IWM is regarded as
the load side of the driveshaft, and other components are
realized in the simulator. By the aforementioned approach,
the controller design for any type of EVs can be performed
using IWM-EVs.

II. MODELING

A. Vehicle dynamics

For the sake of simplicity, this study focuses on the
longitudinal motion of the single-wheel vehicle model in Fig.
1(a) with the drivetrain shown in Fig. 1(b). A drive system
is modeled in which the motor is connected to the tires by
a reduction gear and a differential gear, and the decelerated
output is distributed to the left and right by the differential
gear and transmitted to the tires via the drive shafts. Taking
into account the reduction ratio gmd of the reduction gear, the
torque Tm and angular speed ωm at the motor are converted
to torque TM and angular speed ωM at the ring gear using
the following equations

ωM = gmdωm, (1)

TM =
Tm

gmd
. (2)

The equations that describe the rotational motion of the
motor and wheel are expressed as follows

JM ω̇M =TM −BMωM −Ksθs, (3)
JL0ω̇L =Ksθs −BLωL − rF, (4)

θs =


θS − θb (θS > θb)

0 (−θb ≤ θS ≤ θb)

θS + θth (θS < −θb),

(5)

θS =

∫
(ωM − ωL)dt, (6)

where r, and Ks are the wheel radius, and driveshaft rigidity,
respectively, and ωM , ωL, JM = Jm/g2md+Jinput+Jring+
Jpinion, JL0 = Jside + Jdrive + Jω , BM , BL are the
sum of inertias of components, viscous friction coefficients,
and angular speeds of both the drive side and load side,
respectively. Equations (5) and (6) represent the backlash of
the differential gear where θb is the boundary value of the
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Fig. 2. Drivetrain block diagram.

deadband. The longitudinal motion of the vehicle body is

M
dv

dt
= F − Fd, (7)

where M , v, and Fd are the vehicle mass, vehicle speed, and
air resistance, respectively. The driving force is F = µ(λ)N
where N is the vehicle load, µ is the friction coefficient of
the road surface, and λ is the slip ratio defined as

λ =
vω − v

max(vω, v, ϵ)
, (8)

where vω is the wheel longitudinal speed which is calculated
by vω = rω, and ϵ is the small positive value which prevent
zero division. The relationship between the slip ratio and the
road friction coefficient µ is described by the magic formula
proposed by Pacejka [15].

B. Drivetrain model

For the purpose of controller design, it is possible to
neglect Fd, which is a disturbance term in (7). From (7) and
the definition of (8) of the slip ratio, the driving force can
be expressed as F = Mv̇ = Mr2(1 − λ)ω̇L +Mr2λ̇ω. As
presented in previous papers [11], [12], using this expression
of F and equation (4), the rotational motion of the load side
is also expressed as,

JL(λ)ω̇L =Ksθs −BLωL −Mr2λ̇ω, (9)

JL(λ) =JL0 +Mr2(1− λ). (10)

Based on the above equations, the drivetrain can be
established as a two-inertia block diagram in Fig. 2, where
λ and λ̇ are considered as parameters. Hence, the respective
transfer functions from the motor torque to the motor speed
and wheel are obtained when the slip ratio is stable.

PMn(s) =
ωM

TM
=

JL(λ)s
2 +BLs+Ks

a3(λ)s3 + a2(λ)s2 + a1(λ)s+ a0
(11)

PLn(s) =
ωL

TM
=

Ks

a3(λ)s3 + a2(λ)s2 + a1(λ)s+ a0
(12)

where a3, a2, a1, a0 are defined as a3(λ) =
JMJL(λ), a2(λ) = JL(λ)BM +JMBL, a1(λ) = BMBL+
JMKs + JL(λ)Ks, a0 = (BM +BL)Ks. These parameters
are obtained by system identification using chirp wave motor
torque input when λ = 1.



Fig. 3. Overall driving force controller.

III. PROPOSED DFC SYSMTE

A. Outline of the control system

Define the variable,

y =
vω
v

− 1. (13)

It can be seen that

y =

{
λ

1−λ (λ > 0),

λ (λ < 0).
(14)

Thus, y almost equals to λ, especially when λ is close to
0. Linearizing the magic formula with small λ, we can treat
y as the signal to control the driving force [10]. Let y∗ be
the output of the force controller, the reference speed of the
wheel can be calculated as

ω∗
L = v(1 + y∗) (15)

From the transfer function PMn(s) and PLn(s), the trans-
formation from ωL to ωM can be derived as

GM→L(s) = Q(s)P−1
Ln (s)PMn(s) (16)

where Q(s) = 1/(τQs + 1)3 is a low-pass filter with the
time constant of τQ. Q(s) is introduced to make GM→L(s)
proper tranfer function.

Based on the above discussion, the block diagram of the
proposed DFC system is established in Fig. 3 where Cf (s)
is the force controller. With respect to the nominal dynamics
F = Dsy, Cf can be designed as an integral controller
by pole placement: Cf (s) = Ki/s. The feedforward force
control signal is realized by rF ∗ where F ∗ is the reference
driving force. Besides, gmd is to transform form T ∗

M to T ∗
m.

A-DFO represents the block diagram of the adaptive driving
force observer and Cω(s) is the speed controller. They will
be designed in the following subsections.

B. Adaptive driving force observer

Based on (3) - (6), a state space model can be established
to estimate four variables wM , wL, θs, and F simultane-
ously [16]. The goal of this paper is to demonstrate the
adaptive estimation of the driving force by online iden-
tification of the viscous friction coefficient. For the sake
of demonstration and implementation, this paper utilizes a
reasonable assumption such that wM and wL are almost
equal. Consequently, by summarizing (3) and (4), we have

JMLω̇M =−BMLωM − rF + TM (17)

State

F̂ B̂ML

T ∗
M ωM

Observer

Parameter
identification

Fig. 4. Adaptive driving force observer (A-DFO).

where JML = JM + JL0 and BML = BM + BL. Conse-
quently, the following state space equation is obtained.{

Ẋ = AX +BU

Y = CX
(18)

where the state vectors and matrics are defined as

X =
[
ω̂M F̂

]T
, U = TM , Y = ωM , (19)

A =

[
−BML

JML
− r

JML

0 0

]
, B =

[
1

JML

0

]
, C =

[
1
0

]
. (20)

The continuous time state space model is transformed into
the discrete-time model as{

Xk+1 = AdXk +BdUk

Yk = CdXk

(21)

where k is the time step index, and Ad ≃ (I +ATs), Bd ≃
BTs, Cd = C, I is the 2×2 unity matrix. Ts is the sampling
time which is small enough such that the aforementioned
approximation of Ad and Bd are acceptable (Ts = 1ms in
this study).

The pair of (Ad, Cd) is observable with the non-zero
values of JML and BML. Thus, it is possible to estimate
the driving force using the torque command of Tm and the
measurement of ωM . The inertia terms can be calculated
from the geometry of the drivetrains’s mechanical system.
However, the viscous friction coefficients depend on torque
transmission efficiency, and it is very hard to know these
values accurately. To deal with the influence of friction
coefficient uncertainty, this paper utilizes the A-DFO with the
configuration shown in Fig. 4. The A-DFO consists of a state
observer and a parameter identification. The state observer
is designed as:

X̂k+1 = Âd,kX̂k +BdUk + Ld(Yk − CdX̂k) (22)

where Ld is designed by pole placement to the estimation
error dynamics using the initial value of the parameters JML

and BML. Matrix Âd,k is updated at every estimation period
as

Âd,k = I +

[
− B̂ML,k

JML
− r

JML

0 0

]
Ts (23)

where B̂ML,k is sent from the parameter identification, which
will be described in the following part. From equation (22),
we have:

ϕT θ = γ (24)
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where θ = BML, ϕT = ωM , γ = TM − JML ˙ωM − rF .
Consequently, the parameter θ is identified by the RLS
algorithm [10].

θ̂k = θ̂k−1 +Kk(γk − ϕT
k θ̂k−1) (25)

Kk = Pk−1ϕk(σ + ϕT
k Pk−1ϕk)

−1 (26)

Pk =
1

σ
(I −Kkϕ

T
k )Pk−1 (27)

where σ is the forgetting factor, which is slightly close to 1.
Besides, γ is updated at every estimation period using the
estimated driving force sent from the state observer.

γk = TM,k − JML,kω̇M,k − rF̂ (28)

In order to guarantee the convergence of the A-DFO, the
state estimation gain and the forgetting factor should be
selected for faster convergence of driving force estimation
while considering the effect of noise. The RLS algorithm is
not used until the motor speed exceeds a threshold value ωth

for stable estimation.

C. Proposal of high order motor speed control

In the conventional method [11], the PI controller Cw,pi is
designed assuming that the differential gear is a rigid body.
The pole placement for the closed loop system is conducted
by the plant Pn = 1/((JM + JL0)s).

Cw,pi = kp +
ki
s

(29)

However, to make the plant model close to the actual
drivetrain, the two-inertia model PMn is used as the control
plant in the proposed DFC as shown in Fig. 5. As a proposed
motor speed controller, a PID controller and phase lead
compensator are used, and they are defined as

Cw,pid−lead =

(
kp +

ki
s

+
kds

τds+ 1

)(
τ1s+ 1

τ2s+ 1

)
=

b3s
3 + b2s

2 + b1s
1 + b0

s3 + c2s2 + c1s
. (30)

The plant PMn and Cw,pid−lead are third-order, and the
characteristic polynomial equation of the closed loop system
is sixth-order. The number of control parameters b and c is
six, and the linear equation for pole placement of the closed
loop system can be solved. The phase lead compensator
increases the FB bandwidth while increasing the phase
margin. Thus, the proposed DFC uses the PID controller
and phase lead compensator Cw,pid−lead instead of the PI
controller Cw,pi as the motor speed controller.

TABLE I
VEHICLE PARAMETERS.

Parameter Value
JM 1.55 kgm2

JL0 1.24 kgm2

BM 3.1Nms/rad
BL 0Nms/rad
Ks 2784Nm/rad
M 925 kg
r 0.301m

IV. SIMULATION

A. Evaluation Setting

The main parameters of the vehicle are summarized in
Table I. The value of viscous friction coefficient BM in the
actual plant is 3.1, however considering the modeling error,
the nominal values of BMn are 4 in the simulation and 2.5
in the HIL experiment to confirm the effectiveness of the
proposed method.

The proposed speed controller Cw,pid−lead and A-DFO
are compared with the conventional speed controller Cw,pi

and DFO as shown in Fig. 6. The following three types of
controllers are compared. Firstly as the conventional method
(Conv.), DFO with BMLn = 0 and PI controller Cw,pi are
used. Secondly, as the extension of the conventional method
(Prop1), viscous friction is considered in the conventional
DFO, and the high-order speed controller Cw,pid−lead is
selected. Finally, the combination of A-DFO and Cw,pid−lead

is the second proposal of DFC (Prop2).
The parameters of Cw,pi are kp = 59.95, ki = 164.85,

and those of Cw,pid−lead are kp = 138, ki = 6, kd =
0.6, τd = 0.004, τ1 = 0.005, τ2 = 0.001. The force
controller gain Ki is set to 0.0005. The time constants of
the conventional DFO and the transformation from wL to
wM are set to 0.07 and 0.12, respectively. The poles of the
state estimator are set to [−400,−1000]T and the forgetting
factor σ and threshold motor speed ωth are set to 0.99999
and 0.001, respectively.

B. Evaluation of overall DFC system

As an evaluation of the overall DFC, the tracking per-
formance and estimation accuracy of Conv., Prop1, and
Prop2 are compared. Figs. 7(a), 7(b), and 7(c) show the step
reference of the driving force, the actual driving force, and
the estimation results. The gap between the actual and the
estimated driving force is the estimation error. As the speed
increases, the estimation error of the Conv. increases due
to the effect of viscous friction. While Prop1 reduces the
estimation error, the influence of modeling error remains an
issue. On the other hand, the effect of modeling error is
eliminated by using Prop2. Fig. 7(d) shows the results of
viscous friction estimation, and it is properly estimated by
RLS. The difference of reference and the actual driving force
are compared to evaluate the tracking performance. Although
it is heavily influenced by estimation accuracy, the vibration
of about 0.2Hz is eliminated by using Cw,pid−lead.
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0 5 10 15
0

50

100

150

200

250

300

350

(c) Driving force (Prop2).
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Fig. 7. Simulation of overall DFC.

Fig. 8. Hardware-in-loop experiments setup.

V. EXPERIMENT

A. Experimental system

To evaluate the proposed method, an experimental vehicle
FPEV5 driven by rear-left-IWM is used. As shown in Fig.
8, the load side of the two-inertia system is real IWM, and
real-time simulation is performed from the motor to the
differential. This configuration enables the evaluation of the
controller for OBM-EVs using IWM-EVs. To confirm HIL
experiments, the results of simulations and HIL experiments
are also compared.

The motor speed controller and DFO are independently
validated. The evaluation of overall DFC is compared with
Conv, Prop1, and Prop2 as in the simulation. In the HIL
experiments, the force controller integral gain Ki, forgetting
factor σ and motor speed threshold ωth for RLS are set to
0.000375, 0.9964, and 0.2, respectively.

B. Evaluation of motor speed control

The tracking performance to the speed reference is com-
pared with Cw,pi and Cw,pid−lead. The Nyquist plots of
the systems as shown in Figs. 9(a) and 9(b) show that the
propose method increase the phase margin. Cw,pi designed
by the simple inertia plant Pn has a peak in the sensitivity
function in the real system PMn, and the peak around 0.2Hz

(a) Nyquist plot. (b) Enlarged Nyquist plot.
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Fig. 9. Motor speed control comparison.
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(c) A-DFO.
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(d) Viscous friction estimation.

Fig. 10. Evaluation of driving force observer.

is suppressed by Cw,pid−lead. The reference and measured
motor angular speed are shown in Figs 9(d). The proposed
controller Cw,pid−lead eliminates both overshoot and 0.2Hz
vibration.

C. Evaluation of driving force ovserver

DFO is compared with conventional DFO and A-DFO
when Cω,pid−lead is used as motor speed controllers. Figs.
10(a), 10(b), and 10(c) show the reference and actual driving
force of three types of DFO. Since HIL experiments use
IWM-EVs, the actual driving force is calculated by F̂real =
(Ksθs − JL0ω̇L)/r. Proposed A-DFO can estimate viscous
friction coefficient as shown in Fig. 10(d). The root-mean-
square-error (RMSE) values between the estimation and
actual driving force in simulation and experiment are shown
in Fig. 12(a). The estimation error is greatly reduced by using
A-DFO.
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(c) Prop2.
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Fig. 11. Evaluation of the overall DFC system.
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Fig. 12. RMSE evaluation of the proposed system.

D. Evaluation of overall DFC

The overall driving force is evaluated by comparing the
tracking errors of Conv, Prop1, and Prop2. Figs. 11(a), 11(b),
and 11(c) show the reference and actual driving force. The
RMSE values of tracking error in simulation and experiment
are shown in Fig. 12(b). The tracking error is reduced by
the proposed method. Fig. 11(d) shows the comparison of
vehicle speed of these methods. For vehicle acceleration, it
is important to estimate the viscous friction coefficient. The
response and RMSE values are similar between simulation
and HIL experiments, thus the validity of the HIL experi-
ments is confirmed.

VI. CONCLUSION

We propose a DFC that integrates A-DFO and the high
order speed controller for OBM-EVs. This controller ef-
fectively addresses the challenges related to vibrations and
driving force estimation error when using DFC for OBM-
EVs. By Utilizing the high order speed controller which is
designed to increase the phase margin for the two-inertia
plant model, the vibration and overshoot are eliminated.
The proposed A-DFO adequately estimates both the driving
force and viscous friction coefficient simultaneously. The
effectiveness of this method is verified by simulations and
novel HIL experiments. By using HIL experiments, DFC
for any type of EVs is evaluated by IWM-EVs. In future,
we will extend the state space model of the A-DFO to

remove the assumption that wL = wM . The design of the
feedforward controller and anti-windup feedback controller
will be considered for the force control layer. Furthermore,
we will implement and evaluate the proposed system using
real OBM-EVs.
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