
Page 1 of 13 

Frequency Domain Analysis and Joint Torque Vibration Suppression Control on 

Two-Input-Two-Output Torque Difference Amplification Motor Drive System of 

Electrified Vehicles 

 

Abstract 

To improve the cornering performance, a torque vectoring differential 

(TVD) that generates a torque difference between the left and right 

wheels has been developed. Particularly, the use of multiple electric 

traction motors can easily achieve this. A TVD with a two-motor-

torque difference amplification mechanism (TDA-TVD), which 

employs a unique alignment of planetary gears, has been studied and 

it can generate a larger torque difference compared to an Individual-

wheel-drive (IWD) system in the case of using the equal torque output 

from the traction motors. However, due to the mechanically 

complicated driving force transmission system including driveshafts  

and planetary gears, TDA-TVD is prone to cause torsional vibrations 

of the driveshaft and the yaw rate of the vehicle body while differential 

torque is generated. A previous study derived a dynamic model TDA-

TVD and designed a vibration suppression feedforward controller. 

While the study demonstrated a certain vibration suppression 

performance, it did not strictly consider the load side characteristics 

during the yaw motion. In addition, there was no frequency domain 

analysis either. On the other hand, this study will analyze TDA-TVD 

in frequency domain and propose a novel modeling method to 

construct vibration suppression controllers that deal with both 

longitudinal motion and yaw motion simultaneously. First, this paper 

shows a theoretical frequency domain analysis using matrices and 

obtains resonance frequencies of TDA-TVD. Second, TDA-TVD is 

modeled based on a summation-differential mode transformation. 

Third, simulations and experimental evaluations of vibration 

suppression controls using a real vehicle equipped with the TDA-TVD 

are demonstrated. 

Keywords: Electrified Vehicles, Vibration Suppression Control, Two-

Input-Two-Output Torque Difference Amplification Motor Drive 

System, Frequency Domain Analysis, Torque Vectoring Differential. 

Introduction 

Actively controlling the yaw rate of the vehicle body is an effective 

way to enhance the cornering performance. To do this, a torque 

difference between the left and right wheels must be generated and 

torque vectoring differential (TVD) has been developed [1-3]. For 

conventional vehicles with internal combustion engine, torque 

vectoring was achieved by mainly employing mechanical clutches [3-

4] and frictional brakes [5].  

On the other hand, some electric vehicles (EVs) employ distributed 

electric motors as individual-wheel-drive (IWD) systems. Such EVs 

are actively studied in terms of vehicle dynamics control [6]. A lot of 

studies proposed torque vectoring or distribution algorithms specially 

for the such IWD systems [7-15]. The studies [9-13] mainly focused 

on the stability control of the vehicle maneuver by adjusting torque 

distribution of in-wheel-motors (IWMs). On the other hand, the studies 

[16-19] worked on traction control algorithms with different objects or 

approaches. Integration of vehicle dynamic controls with different 

actuators can be seen on [20-22]. Model predictive control has been 

widely studies thanks to its advantage of online input optimization [23-

24]. Vehicle stability control considering autonomous drive are also a 

trend [25-26]. However, these IWD systems have a fundamental 

disadvantage of the reduction of the available maximum torque 

difference and direct yaw moment when the vehicle is cruising at high 

speed because of the decrease of the maximum motor torque, and when 

the vehicle is turning with large lateral acceleration due to the load 

transfer that causes that the inner wheels have less traction force. 

In order to increase the available torque difference of electric vehicles, 

a TVD with a two-motor-torque difference amplification mechanism 

(TDA-TVD) has been proposed by a group of Sawase [27-28]. Two 

traction motors are used for TDA-TVD to drive rear two wheels. The 

unique feature of TDA-TVD is that the left and right sides are 

mechanically coupled as seen in Figure 1, making it considered as the 

two-input-two-output drive system. TDA-TVD further amplifies 

differential torque inputs compared to the conventional IWD system 

(either onboard motors (OMBs) or IWMs) with the same electric 

traction motor, and it was suggested that the cornering performance 

could be improved [27-28]. The use of TDA-TVD will have economic 

benefits to achieve larger maximum torque difference. Without TDA-

TVD, larger maximum torque difference could only achieved by 

increasing the motor size, which results in higher costs (for both MOBs 

or IWMs). However, TDA-TVD also increases vibrations of the 

driveshaft torque on the wheels and consequential yaw rate vibration 

of the vehicle body during cornering because of the amplified 

differential torque.  

The driveline of vehicles including internal combustion engines, 

transmissions, driveshafts, and tires can be the source of vibration. In 

the case of EVs, relatively fast torque response of electric motors can 

cause torsional vibration of the driveline such as driveshafts. To deal 

with this potential issue, some studies designed anti-vibration 

controllers [29-37]. Most of them targeted EVs with drive systems 

which drives two of front or rear wheels with a single motor, or the left 

and right wheels individually with two motors. Therefore, those 

conventional methods cannot be effectively applied to TDA-TVD 

because of its fundamentally different mechanical structure. 

To deal with this issue, a previous study derived a linearized model of 

TDA-TVD and designed a vibration suppression feedforward 

controller [38]. The derived linearized model assumed a constant load 

model (when vehicle is going on straight paths), which does not 

guarantee its performance for any situations (e.g., cornering). 

Furthermore, the parameter tuning of the vibration suppression 

controller was based on time-domain analysis (i.e., waveform of 

measured driveshaft torque), which could be time-consuming. 

This study provides improved methods to construct controllers for 

TDA-TVD. This study first analyzes TDA-TVD in the frequency 

domain in detail, clarifying resonance frequencies and corresponding 

vibration modes. Second, this study proposes a novel linearized model 

of TDA-TVD that well describes the longitudinal motion and yaw 
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motion using a coordinate transformation. By doing this, a frequency 

domain analysis of the real hardware of TDA-TVD will be much easier. 

Furthermore, the driveshaft torque vibration of the longitudinal and 

yaw modes could be effectively mitigated by designing controllers for 

the corresponding modes. 

 
Figure 1. Dynamic model of TDA-TVD. 

Dynamic model of TDA-TVD on normal mode 

TDA-TVD could be designed in multiple types [27-28]. Figure 1 shows 

an example of schematic diagram of TDA-TVD. All types of TDA-

TVD can be comprehensively represented by a speed diagram as 

shown in Figure 2 using b1 and b2 [28]. In the figure, b1 and b2 are the 

equivalent secondary reduction gear ratios which represent the 

amplification ratio of the differential torque input (b1 ≒  b2 for 

practicality). 

Derivation of Dynamic Model of TDA-TVD on Normal Mode 

In the previous study, vectors and matrices are partly used to derive the 

dynamic model of TDA-TVD, but in this study, they are fully 

employed for simpler and more organized representation. Previously, 

from Figure 1 and 2, a dynamic model of TDA-TVD was derived as 

shown in Figure 3(a) and Figure 3(b) [38]. In Figure 3(a), motor torque 

and angular speeds are chosen as inputs and outputs, and the driveshaft 

side components are converted to the motor side. Conversely, in Figure 

3(b), the motor side components are converted to the driveshaft side. 

The second block diagram is convenient to use for controlling the 

driveshaft side angular speed 𝜔𝑅(𝐿)𝑑𝑠 and driveshaft torque 𝑇𝑅(𝐿)𝑑𝑠. In 

this block diagram, a driveshaft side torque input 𝑇𝑅(𝐿)𝑖𝑛 is converted 

from the input motor torque 𝑇𝑅(𝐿)𝑀 as shown in (1), and a driveshaft 

side angular speed 𝜔𝑅(𝐿)𝑑𝑠 is converted from the motor side angular 

speed 𝜔𝑅(𝐿)𝑀 as shown in (2). These two equations represent the static 

relationship between motor side and driveshaft side. 

 𝑻𝑖𝑛=𝑩𝑮𝑻𝑀 (1) 

 

where          𝑻𝑖𝑛 ≝ [
𝑇𝑅𝑖𝑛

𝑇𝐿𝑖𝑛
] , 𝑩 ≝ [

𝑏2 + 1 −𝑏2

−𝑏1 𝑏1 + 1
], 

𝑮 ≝ [
𝐺𝑅 0
0 𝐺𝐿

] , 𝑻𝑀 ≝ [
𝑇𝑅𝑀

𝑇𝐿𝑀
] 

 

 𝝎𝑑𝑠=𝑩−1𝑮𝝎𝑀 (2) 

 

where                𝝎𝑑𝑠 ≝ [
𝜔𝑅𝑑𝑠

𝜔𝐿𝑑𝑠
] , 𝝎𝐿 ≝ [

𝜔𝑅𝑀

𝜔𝐿𝑀
] 

 

The following three equations represent the dynamics of the left and 

right wheels, motors, and driveshafts. 

 𝝎𝐿=𝑷𝐿(𝑻𝑑𝑠 − 𝑻𝐿) (3) 

 

 𝝎𝑑𝑠=𝑩−1𝑮−1𝑷𝑀𝑮−1(𝑩𝑇)−1(𝑻𝑖𝑛 − 𝑻𝑑𝑠) (4) 

 

 𝑻𝑑𝑠=𝑷𝑑𝑠(𝝎𝑑𝑠 − 𝝎𝐿) (5) 

 

where        𝝎𝐿 ≝ [
𝜔𝑅𝐿

𝜔𝐿𝐿
] , 𝑻𝐿 ≝ [

𝑇𝑅𝐿

𝑇𝐿𝐿
] , 𝑻𝑑𝑠 ≝ [

𝑇𝑅𝑑𝑠

𝑇𝐿𝑑𝑠
], 

𝑷𝐿 ≝ [
1/(𝐽𝑅𝐿𝑠 + 𝐷𝑅𝐿) 0

0 1/(𝐽𝐿𝐿𝑠 + 𝐷𝐿𝐿)
], 

𝑷𝑀 ≝ [
1/(𝐽𝑅𝑀𝑠 + 𝐷𝑅𝑀) 0

0 1/(𝐽𝐿𝑀𝑠 + 𝐷𝐿𝑀)
], 

𝑷𝑑𝑠 ≝ [
𝐷𝑅𝑠 + 𝐾𝑅𝑠/𝑠 0

0 𝐷𝐿𝑠 + 𝐾𝐿𝑠/𝑠
] 

 

where each variable is defined or derived as follows 

 
Figure 2. Speed diagram of TDA-TVD. 

 
(a) Converted to motor side. 

 
(b) Converted to driveshaft side [38]. 

Figure 3. Block diagrams of linearized normal model of TDA-TVD. 

TRL

ωRL

JLM, DLM

Planetary 

GearsetsLoad Sides

Motor Sides

TLM

ωLM

TRM

ωRM

TLm

ωLm

TRm

ωRm

TLds

ωLds

TRds

ωRds

TLL

ωLL

JRM, DRM

KLs, DLs KRs, DRs

JLL, DLL
JRL, DRL

Driveshaft Driveshaft

Wheel Wheel

TLin

TRin

TRds

TRm

ωLm

Gear Ratio

ωRds

ωLds

TLm

ωRm
TLds

Wheel Speed

Driveshaft side torques

Motor torques

converted to

driveshaft side

G -1

G -1

G -1

G -1

G -1

G -1

G -1

G -1



Page 3 of 13 

Derivation of Linear Model of TDA-TVD on Normal Mode 

The previous study [38] delivered a linearized normal model by 

assuming 𝑇𝑅𝐿 = 𝑇𝐿𝐿 = 0 and 𝐽𝑅𝐿 = 𝐽𝐿𝐿 = 𝐽𝑤 + 𝑟2𝑀/2, i.e., which is 

in the case the vehicle is proceeding on straight paths and the wheels 

are not slipping.  

Transfer functions of linear model of TDA-TVD could be also 

represented by matrices effectively. From the equations (3-5), we have 

the following equation 

 𝑻𝑑𝑠=[𝑩𝑇𝑮𝑷𝑀
−1𝑮𝑩(𝑷𝒅𝒔

−1+ 𝑷𝐿)+𝑬2]
−1𝑻𝑖𝑛 

= [
𝑇𝑅𝑑𝑠/𝑇𝑅𝑖𝑛 𝑇𝑅𝑑𝑠/𝑇𝐿𝑖𝑛

𝑇𝐿𝑑𝑠/𝑇𝑅𝑖𝑛 𝑇𝐿𝑑𝑠/𝑇𝐿𝑖𝑛
] 𝑻𝑖𝑛 = [

𝑔11 𝑔12

𝑔21 𝑔22
] 𝑻𝑖𝑛 

(6) 

 

where 𝑬2 is a 2x2 identity matrix. Each component of the matrix above 

is the transfer function between 𝑇𝑅(𝐿)𝑖𝑛  and 𝑇𝑅(𝐿)𝑑𝑠 . These matrices 

representation can handle different left and right side parameters, but 

for the practicality, they are designed to be as equal as possible.  

Now we assume all the left and right side parameters except for 𝑏1 and  

𝑏2 are equal (e.g., 𝐺𝑅 = 𝐺𝐿 = 𝐺, 𝐾𝑅𝑠 = 𝐾𝐿𝑠 = 𝐾𝑠, etc.). In that case, 

𝑮, 𝑷𝑑𝑠 , 𝑷𝑀 , and 𝑷𝐿 become scalars. The above equation will become 

𝑻𝑑𝑠=[𝑋𝒁+𝑬2]
−1𝑻𝑖𝑛 

=
𝑋𝑑

𝑌
[
𝑍22𝑋𝑛 + 𝑋𝑑 −𝑋𝑛𝑍12

−𝑋𝑛𝑍21 𝑍11𝑋𝑛 + 𝑋𝑑
] 𝑻𝑖𝑛 

(7) 

 

Where                              𝒁 ≝ 𝑩𝑇𝑩 

= [
(𝑏2 + 1)2 + 𝑏1

2 −𝑏1
2 − 𝑏1 − 𝑏2

2 − 𝑏2

−𝑏1
2 − 𝑏1 − 𝑏2

2 − 𝑏2 (𝑏1 + 1)2 + 𝑏2
2 ]= [

𝑍11 𝑍12

𝑍21 𝑍22
] 

 X ≝
𝑋𝑛

𝑋𝑑
=

𝐺2(𝐽𝑀𝑠 + 𝐷𝑀)[𝐽𝐿𝑠
2 + (𝐷𝐿 + 𝐷𝑠)𝑠 + 𝐾𝑠]

(𝐽𝐿𝑠 + 𝐷𝐿)(𝐷𝑠𝑠 + 𝐾𝑠)
 

𝑌 ≝ 𝑋𝑛
2|𝒁| + 𝑋𝑛𝑋𝑑(𝑍11 + 𝑍22) + 𝑋𝑑

2 

|𝒁|=(𝑏1 + 𝑏2 + 1)2 

 

Since left and right sides of TDA-TVD are 1DOF systems, 𝜔𝑅𝑑𝑠, 𝜔𝑅𝐿, 

𝑇𝑅𝑑𝑠 have one-to-one-one relationships with each other, which is given 

by the following equations ( and also for between 𝜔𝐿𝑑𝑠, 𝜔𝐿𝐿, 𝑇𝐿𝑑𝑠), 

𝝎𝑑𝑠=
𝐽𝐿𝑠

2 + (𝐷𝐿 + 𝐷𝑠)𝑠 + 𝐾𝑠

(𝐽𝐿𝑠 + 𝐷𝐿)(𝐷𝑠𝑠 + 𝐾𝑠)
𝑻𝑑𝑠 (8) 

 

 𝝎𝐿=
1

𝐽𝐿𝑠 + 𝐷𝐿
𝑻𝑑𝑠 (9) 

 

we can also obtain the transfer functions with the driveshaft-side 

angular speed or wheel speed being outputs (i.e., from 𝑻𝑖𝑛 to 𝝎𝑑𝑠, or , 

𝝎𝐿). By also using (5) and (6), we can derive other transfer function 

matrix such as from 𝑻𝑀 to 𝝎𝑀. 

Frequency Response Analysis of TDA-TVD on Normal Mode 

A frequency domain analysis has numerous advantages in system 

identification (modeling and parameter fitting), controller design and 

parameter tuning (securing both performance and stability margin). As 

we obtained the basic transfer functions of TDA-TVD, we are going 

to give the frequency domain analysis of TDA-TVD next. Since the 

linear model of TDA-TVD is classified as two-degree-of-freedom 

(2DOF) system, there are two vibration modes and corresponding 

resonance frequencies 𝜔𝑟𝐿  (lower resonance frequency) and 𝜔𝑟𝐻 

(higher resonance frequency). Those are the roots of the following 

characteristic equation.  

  𝑌|𝑠=𝑗𝜔𝑟𝐿(𝐻)
= 0 (10) 

 

Approximated resonance frequencies could be obtained by assuming 

all the viscosity to be zero (i.e., 𝐷𝐿 = 𝐷𝑠 = 𝐷𝑀 = 0). 

 𝜔𝑟𝐿=√ 𝐾𝑠 [
1

𝐽𝐿
+

1

2|𝑱|
(𝐽𝑋 − √𝐽𝑋

2 − 4|𝑱|)], 

𝜔𝑟𝐻=√ 𝐾𝑠 [
1

𝐽𝐿
+

1

2|𝑱|
(𝐽𝑋 + √𝐽𝑋

2 − 4|𝑱|)] 

(11) 

 

where                   𝑱= [
𝐽11 𝐽12

𝐽21 𝐽22
] = 𝐺2𝐽𝑀𝒁 

𝐽𝑋 = 𝐽11 + 𝐽22 = 𝐺2𝐽𝑚(𝑏1
2 + 𝑏2

2 + 𝑏1 + 𝑏2 + 1) 
 

If we assume 𝐽11 = 𝐽22  (i.e., 𝑏1 = 𝑏2  which is a reasonable 

assumption), these equations will be simplified as 

 𝜔𝑟𝐿=√ 𝐾𝑠 (
1

𝐽𝐿
+

1

𝐽11 − 𝐽12
) ≈ √ 

𝐾𝑠

𝐽11 − 𝐽12
, 

𝜔𝑟𝐻=√ 𝐾𝑠 (
1

𝐽𝐿
+

1

𝐽11 + 𝐽12
) ≈ √ 

𝐾𝑠

𝐽11 + 𝐽12
 

(12) 

 

It should be noted that 𝐽12 < 0 , so √ 𝐾𝑠/(𝐽11 − 𝐽12) <

√𝐾𝑠/(𝐽11 + 𝐽12) holds. The approximation is reasonable since usually 

𝐽𝐿 ≫ (𝐽11 ∓ 𝐽12) satisfies. In other words, the resonance frequencies 

are virtually determined by the motor inertia. 

The left and right side motor inertia vibrate in the same phase 

(summation mode) at the higher resonance frequency 𝜔𝑟𝐻 , and the 

opposite phase (differential mode) at the lower resonance frequency 

𝜔𝑟𝐿, which could be identified by substituting 𝑠 = 𝑗𝜔𝑟𝐿(𝐻) and 𝑻𝑖𝑛 = 

0 to (3-5).  

On the other hand, the anti-resonance frequency 𝜔𝑎 can be obtained 

by finding the root of the numerator of the common term of the transfer 

function matrix, i.e., 

 𝑋𝑑|𝑠=𝑗𝜔𝑎
 = 0 (13) 

 

By solving this equation, we get 

 𝜔𝑎 = √ 
𝐾𝑠

𝐽𝐿
 (14) 

 

This vibration mode is solely determined by the load side inertia, 

naturally due to the fact that the motor side does not vibrate at all when 

anti resonance is occurring. 
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(a) 𝜔𝐿𝑀/𝑇𝐿𝑀. 

 
(b) 𝜔𝑅𝑀/𝑇𝐿𝑀. 

Figure 4. Frequency responses of TDA-TVD on normal mode in both 
theoretical fitting model and real hardware bench. While the higher frequency 

region above 2 Hz has decent agreement between the experimental results and 

fitting model, lower frequency region has significantly different curves. 

Frequency-domain System Identification of TDA-TVD on Normal 

Mode 

The previous study took left and right motor torques 𝑇𝑅(𝐿)𝑀  (or 

𝑇𝑅(𝐿)𝑖𝑛) as inputs and left and right motor wheel speeds 𝜔𝑅(𝐿)𝑀  (or 

𝜔𝑅(𝐿)𝑑𝑠) as outputs and assumed the load inertia as 𝐽𝑅𝐿 = 𝐽𝐿𝐿 = 𝐽𝑤 +

𝑟2𝑀/2 for the linear model of TDA-TVD. This mode has issues with 

emulating the differential torque inputs and differential rotation, which 

will be explained in this section. 

The frequency response of TDA-TVD on normal mode is obtained by 

both the theoretical transfer functions and experiments of the system 

identification using chirp sine wave torque inputs to a real hardware 

bench with the TDA-TVD unit. Offset torques are also added to 

eliminate the effect of the backlash of the driven gears. The first order 

polynomial of the measured angular speeds are removed using 

“detrend” function of MATLAB. The bench is equipped with two 

independent electric motors to emulate a load model proceeding on 

straight path (i.e., left and right wheel speeds are kept equal). The bode 

diagrams of the frequency responses are shown in Figure 4. These are 

obtained by using “frd” function of MATLAB. There is a decent 

agreement between the fitting model and experimental results at higher 

frequency (above 2 Hz). However, at lower frequency, there is a 

significant difference between them. While two resonance frequencies 

are identifiable, anti-resonance frequency cannot be. This is because 

the linearized normal model has no restriction of differential rotation 

but there is the restriction of it on the real bench and real vehicles. 

Therefore, the load characteristics (e.g., apparent nominal inertia) 

changes in the real vehicles, while the linearized normal model 

assumes constant load. Overall, this clearly shows the limitation of the 

linear model with normal mode. The agreement on the higher 

frequency suggests that the derived model of TDA-TVD is reliable, 

except for loads (wheels). This is the major motivation why we would 

like to propose the next approach. 

Dynamic model of TDA-TVD with summation-

differential mode transformation 

The previous approach requires the decoupling compensator. Not only 

it makes the overall controller architecture more complex, but also the 

linearized model does not effectively consider the yaw motion, which 

varies the apparent load inertia. Since the behavior of the vehicle is 

drastically different in both cases, it is better to construct the dynamic 

model of each state respectively and their corresponding controllers. 

We define a summation mode in which the vehicle is translating, and 

a differential mode in which the vehicle is rotating in the yaw axis. The 

idea of coordinate transformation can be seen on [39-40], where 

mathematical operation makes it easier to handle seemingly complex 

plants. 

Derivation of Dynamic Model of TDA-TVD with summation-

differential mode transformation 

(4) can be simplified by assuming the left and right side parameters are 

equal to each other (except for 𝑏1 ≠ 𝑏2) as follows 

 𝝎𝑑𝑠=𝐺−2𝑃𝑀𝒁−1(𝑻𝑖𝑛 + 𝑻𝑑𝑠) (15) 

 

From the above equation, it is clear that the both input torques 𝑇𝑅𝑖𝑛 

and 𝑇𝐿𝑖𝑛 affect to the output angular speed 𝜔𝐿𝑑𝑠 and 𝜔𝑅𝑑𝑠, since the 

matrix 𝒁−1 is not diagonal, which is also visible in the coupling blocks 

in the block diagrams of TDA-TVD. If we could make this matrix 

diagonal by certain proper coordinate transformation, we can decouple 

the model into two of 1DOF systems. 

Fundamentally, TDA-TVD is a device that further amplifies 

differential torque inputs. Therefore, it is natural to decouple the 

systems in two modes; summation and differential modes, where equal 

and differential input torques are applied to the left and right side 

wheels. In order to convert a dynamic model of TDA-TVD by 

summation-differential mode transformation (SDMT), we need to 

multiply a coordinate transformation matrix 𝑨 to each of input and 

output parameters, which is given by 

𝑨 =
1

2
[
1 1
1 −1

] (16) 

 

Load side dynamics are easy to perform the SDMT because there is no 

couplings between left and right systems. The dynamics of the load 

and the driveshaft can be represented in summation and differential 

modes, which is given by 

𝑨𝝎𝐿 = 𝑨𝑃𝐿(𝑻𝑑𝑠 − 𝑻𝐿) (17) 
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[

1

2

1

2
1

2
−

1

2

] [
𝜔𝑅𝐿

𝜔𝐿𝐿
] = 𝑃𝐿 [

1

2

1

2
1

2
−

1

2

] [
𝑇𝑅𝑑𝑠 − 𝑇𝑅𝐿

𝑇𝐿𝑑𝑠 − 𝑇𝐿𝐿
] 

= [
𝜔𝑆𝐿

𝜔𝐷𝐿
] = 𝑃𝐿 [

𝑇𝑆𝑑𝑠 − 𝑇𝑆𝐿

𝑇𝐷𝑑𝑠 − 𝑇𝐷𝐿
] 

𝑨𝑻𝑑𝑠 = 𝑨𝑃𝐷𝑆(𝝎𝑑𝑠 − 𝝎𝐿) 

[

1

2

1

2
1

2
−

1

2

] [
𝑇𝑅𝑑𝑠

𝑇𝐿𝑑𝑠
] = 𝑃𝐷𝑆 [

1

2

1

2
1

2
−

1

2

] [
𝜔𝑅𝑑𝑠 − 𝜔𝑅𝐿

𝜔𝐿𝑑𝑠 − 𝜔𝐿𝐿
] 

= [
𝑇𝑆𝑑𝑠

𝑇𝐷𝑑𝑠
] = 𝑃𝐷𝑆 [

𝜔𝑆𝑑𝑠 − 𝜔𝑆𝐿

𝜔𝐷𝑑𝑠 − 𝜔𝐷𝐿
] 

(18) 

 

where the additional letter of either 𝑆 or 𝐷 on the subscript represents 

summation or differential mode, respectively. Now, we would like to 

multiply (36) by 𝑨 and it is given by 

𝑨𝝎𝑑𝑠 = 𝑨𝐺−2𝑃𝑀𝒁−1(𝑻𝑖𝑛 − 𝑻𝑑𝑠) 

= 𝐺−2𝑃𝑀𝑪𝑨(𝑻𝑖𝑛 − 𝑻𝑑𝑠) 

= [
𝜔𝑆𝑑𝑠

𝜔𝐷𝑑𝑠
] = 𝐺−2𝑃𝑀𝑪 [

𝑇𝑆𝑖𝑛 − 𝑇𝑆𝑑𝑠

𝑇𝐷𝑖𝑛 − 𝑇𝐷𝑑𝑠
] 

(19) 

 

where 𝑪 is a certain diagonal matrix to obtain. In order to satisfy the 

above equation, 𝒁−1 has to satisfy 

𝑨𝒁−1 = 𝑪𝑨 (20) 

 

This condition only satisfies if  𝑏1 = 𝑏2 holds. Thankfully, 𝑏1 and 𝑏2 

are designed to be close as possible so this condition of the 

approximation is acceptable. With this approximation 𝑏1 = 𝑏2 ≈ 𝑏 =
(𝑏1 + 𝑏2)/2, 𝑪 is given by 

 

(a) Summation mode. 

 
(b) Differential mode. 

Figure 5. Block diagrams of linearized normal model of TDATVD. 

 
Figure 6. Accelerating vehicle. 

 

𝑪 = [
1 0

0
1

|𝒁|
] = [

1 0

0
1

(𝑏1 + 𝑏2 + 1)2
] (21) 

 

The above equation is a diagonal matrix, which indicates that each 

mode is decoupled from each other. Now we have the block diagram 

of TDA-TVD in both the summation and differential modes as shown 

in Figure 5(a) and Figure 5(b). The unique feature of the torque 

differential amplification only appears on the differential mode, which 

agrees with the intended function of TDA-TVD. 

Derivation of Linear Model of TDA-TVD on Summation Mode 

A linearization of the dynamic model of TDA-TVD on summation and 

differential modes is required to construct controllers. The 

linearization here means the load torque 𝑇𝐿 is solely determined by the 

input torque 𝑇𝑖𝑛 so that 𝑇𝐿 can be replaced by an equivalent load side 

dynamic. On the summation mode, we consider the vehicle 

accelerating on straight paths as shown in Figure 6. 

We have the following equations to describe the acceleration of the 

wheels and vehicle 

 
Figure 7. Block diagram of linearized TDA-TVD in summation mode. 

𝜔𝑆𝐿 =
1

𝐽𝑤𝑠 + 𝐷𝐿

(𝑇𝑆𝑑𝑠 − 𝑇𝑆𝐿) (22) 

 

𝑇𝑆𝐿 = 𝑟𝐹𝑆𝑥 (23) 

 

𝑉𝑥 =
2

𝑀𝑠
𝐹𝑆𝑥 (24) 

 

𝑉𝑆𝐿 = 𝑟𝜔𝑆𝐿 (25) 

 

𝜆𝑆 =
𝑉𝑆𝐿 − 𝑉𝑥

𝑉𝑆𝐿
 (26) 

 

G -1 G -1

G -1 G -1

ωSL

rFSx

TSds

V

M

Jw

TDA-TVD
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where 𝑉𝑥  is the longitudinal vehicle body speed and 𝜆𝑆  is the 

summation slip ratio. From these equations, we get the transfer 

function of the linear model as follows 

𝜔𝑆𝐿

𝑇𝑆𝑑𝑠
=

1

[𝐽𝑤 + 𝑟2𝑀(1 − 𝜆𝑆𝑛)/2]𝑠 + 𝐷𝐿
=

1

𝐽𝑆𝐿𝑠 + 𝐷𝐿
 (27) 

 

where 𝐽𝑆𝐿 and 𝜆𝑆𝑛 are the equivalent load inertia and nominal slip ratio 

on the summation mode. The block diagram of the linearized model of 

TDA-TVD on the summation mode is shown in Figure 7. In the figure, 

the motor inertia and viscosity on the summation mode 𝐽𝑆𝑀 and 𝐷𝑆𝑀 

are multiplied by 𝐺2  from the original value. Some of transfer 

functions of this summation mode are given by 

𝑇𝑆𝑑𝑠

𝑇𝑆𝑖𝑛
=

(𝐽𝑆𝐿𝑠 + 𝐷𝐿)(𝐷𝑠𝑠 + 𝐾𝑠)

𝑐3𝑠
3 + 𝑐2𝑠

2 + 𝑐1𝑠 + 𝑐0
 (28) 

 

where  𝑐3 = 𝐽𝑆𝑀𝐽𝑆𝐿, 𝑐2 = 𝐽𝑆𝑀(𝐷𝐿 + 𝐷𝑠) + 𝐽𝑆𝐿(𝐷𝑆𝑀 + 𝐷𝑠) 

𝑐1 = 𝐷𝑆𝑀𝐷𝐿 + 𝐷𝑆𝑀𝐷𝑠 + 𝐷𝐿𝐷𝑠 + 𝐾𝑠(𝐽𝑆𝑀 + 𝐽𝑆𝐿), 𝑐0 = (𝐷𝑆𝑀 + 𝐷𝐿)𝐾𝑠 
 

𝜔𝑆𝑑𝑠

𝑇𝑆𝑖𝑛
=

𝐽𝑆𝐿𝑠
2 + (𝐷𝐿 + 𝐷𝑠)𝑠 + 𝐾𝑠

𝑐3𝑠
3 + 𝑐2𝑠

2 + 𝑐1𝑠 + 𝑐0
 

(29) 

𝜔𝑆𝐿

𝑇𝑆𝑖𝑛
=

𝐷𝑠𝑠 + 𝐾𝑠

𝑐3𝑠
3 + 𝑐2𝑠

2 + 𝑐1𝑠 + 𝑐0
 

(30) 

Derivation of Linear Model of TDA-TVD on Differential Mode 

On the differential mode, we consider the rotating vehicle as shown in 

Figure 8. The left and right wheel have the different longitudinal  

 
Figure 8. Rotating vehicle. 

vehicle speed from the longitudinal vehicle body speed 𝑉𝑥 due to the 

yaw rate 𝛾, which is given by 

𝑉𝑟𝑟𝑥 = 𝑉𝑥 +
𝑑

2
𝛾 

𝑉𝑟𝑙𝑥 = 𝑉𝑥 −
𝑑

2
𝛾 

(31) 

 

Therefore, a differential longitudinal vehicle speed between the left 

and right wheels 𝑉𝐷𝑥 is given by 

𝑉𝐷𝑥 =
𝑉𝑟𝑟𝑥 − 𝑉𝑟𝑙𝑥

2
=

𝑑

2
𝛾 (32) 

 

With the equation above, we can define the differential slip ratio 𝜆𝐷 as 

follows 

𝜆𝐷 =
𝑟𝜔𝐷𝐿 − 𝑉𝐷𝑥

𝑟𝜔𝐷𝐿
 (33) 

 

Now, the yaw rate and the differential angular speed 𝜔𝐷𝐿  can be 

related, which is given by 

𝛾 =
𝑟

𝑑 2⁄
(1 − 𝜆𝐷)𝜔𝐷𝐿 (34) 

 

We have the following equations to describe the yaw rotation of the 

wheels and vehicle [41] 

𝜔𝐷𝐿 =
1

𝐽𝑤𝑠 + 𝐷𝐿

(𝑇𝐷𝑑𝑠 − 𝑇𝐷𝐿) (35) 

 

𝑇𝐷𝐿 = 𝑟𝐹𝐷𝑥 (36) 

 

𝐼�̇� = −2𝐶𝑓𝑙𝑓 (𝛽 +
𝑙𝑓

𝑉
𝛾 − 𝛿𝑓) + 2𝐶𝑟𝑙𝑟 (𝛽 −

𝑙𝑟
𝑉

𝛾) +
𝑑

2
2𝐹𝐷𝑥  (37) 

 

𝑎𝑦 = 𝑉(𝛽𝑠 + 𝛾) (38) 

 

 

 
Figure 9. Block diagram of linearized TDA-TVD in differential mode.  

Since we only consider yaw motion while on the straight paths, 𝛿𝑓 =

0 and 𝑎𝑦 = 0 hold. This assumption is also helpful to simplify the 

model and controller. With these, we can derive the following transfer 

function 

𝜔𝐷𝐿

𝑇𝐷𝑑𝑠
=

𝑠

𝐽𝐷𝐿𝑠
2 + 𝐷𝐷𝐿𝑠 + 𝐾𝐷𝐿

 (39) 

 

𝐽𝐷𝐿 = 𝐽𝑤 +
2𝑟2

𝑑2
(1 − 𝜆𝐷𝑛)𝐼 (40) 

 

𝐷𝐷𝐿 = 𝐷𝐿 +
4𝑟2

𝑑2𝑉
(1 − 𝜆𝐷𝑛)(𝐶𝑓𝑙𝑓

2 + 𝐶𝑟𝑙𝑟
2) (41) 

 

𝐾𝐷𝐿 =
4𝑟2

𝑑2
(1 − 𝜆𝐷𝑛)(𝐶𝑟𝑙𝑟 − 𝐶𝑓𝑙𝑓) (42) 

 

where 𝐽𝐷𝐿 , 𝐷𝐷𝐿 , 𝐾𝐷𝐿   and 𝜆𝐷𝑛  are the equivalent load inertia, load 

damping factor, load elasticity factor, and nominal slip ratio on the 

differential mode. If the vehicle is neutral steer (NS), then 𝐾𝐷𝐿 = 0 

-TDds

V

TDds

Yaw rate γ

Yaw inertia I

Vrl Vrr

TDL

-TDL

d/2 d/2

lf

COG
lr

TDA-

TVD
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satisfies. The block diagram of the linearized model of TDA-TVD on 

the differential mode is shown in Figure 9. In the figure, the motor 

inertia and viscosity on the differential mode 𝐽𝐷𝑀  and 𝐷𝐷𝑀 are 

multiplied by 𝐺2(1 + 𝑏1 + 𝑏2)
2 from the original value.  

Transfer functions 
𝑇𝐷𝑑𝑠

𝑇𝐷𝑖𝑛
, 

𝜔𝐷𝑑𝑠

𝑇𝐷𝑖𝑛
, and 

𝜔𝑆𝐿

𝑇𝑆𝑖𝑛
 of this differential mode of the 

NS vehicle (𝐾𝐷𝐿 = 0) can be represented in the same form as (28-30). 

𝑇𝐷𝑑𝑠

𝑇𝐷𝑖𝑛
=

(𝐽𝐷𝐿𝑠 + 𝐷𝐷𝐿)(𝐷𝑠𝑠 + 𝐾𝑠)

𝑑3𝑠
3 + 𝑑2𝑠

2 + 𝑑1𝑠 + 𝑑0
 (43) 

 

where 𝑑3 = 𝐽𝐷𝑀𝐽𝐷𝐿, 𝑑2 = 𝐽𝐷𝑀(𝐷𝐷𝐿 + 𝐷𝑠) + 𝐽𝐷𝐿(𝐷𝐷𝑀 + 𝐷𝑠), 

𝑑1 = 𝐷𝐷𝑀𝐷𝐷𝐿 + 𝐷𝐷𝑀𝐷𝑠 + 𝐷𝐷𝐿𝐷𝑠 + 𝐾𝑠(𝐽𝐷𝑀 + 𝐽𝐷𝐿), 𝑑0 = (𝐷𝐷𝑀 + 𝐷𝐷𝐿)𝐾𝑠 
 

It is convenient to consider a differential mode with an assumption that 

load inertia is infinite and differential wheel speed 𝜔𝐷𝐿 = 0 because 

we can approximately represent the differential mode using much less 

parameters with descent agreement in case of low speed. Therefore, 

we can have the following block diagram (Figure 10). 

 
Figure 10. Block diagram of linearized TDA-TVD in differential mode with 

infinite load side inertia approximation. 

The transfer functions of this model are given by 

𝑇𝐷𝑑𝑠

𝑇𝐷𝑖𝑛
=

𝐷𝑠𝑠 + 𝐾𝑠

𝐽𝐷𝐿𝑠
2 + (𝐷𝐷𝑀 + 𝐷𝑠)𝑠 + 𝐾𝑠

 (44) 

 

𝜔𝐷𝑑𝑠

𝑇𝐷𝑖𝑛
=

𝑠

𝐽𝐷𝐿𝑠
2 + (𝐷𝐷𝑀 + 𝐷𝑠)𝑠 + 𝐾𝑠

 (45) 

 

 

Frequency Response Analysis of TDA-TVD on Differential Mode 

In order to evaluate the proposed linear model of TDA-TVD on 

differential mode, simulations of frequency response of TDA-TVD 

with a simplified vehicle model were carried out. The simplified 

vehicle model contains a single sprung mass and four wheels with the 

brush model which has a nonlinear relation between the slip of the 

wheel and the tire force. To focus on the vibration of the driveline, 

suspension dynamics (vertical movement)) is neglected. The rear 

wheels are driven by two motors with TDA-TVD while the front 

wheels are not driven. The simulated vehicle has the same parameters 

with the experimental vehicle. Input differential torque has the 

amplitude of 100 Nm. Initial vehicle speed 𝑉 is set to 10 m/s, which is 

a moderate speed as benchmark. During the simulation, steering angle 

is kept zero. The vehicle is assumed to be NS (i.e., 𝐾𝐷𝐿 = 0). The 

simplified nonlinear vehicle model, the obtained linear vehicle model 

on the differential mode and the simplified linear model with infinite 

load side inertia are compared together. The parameters of the 

simulated vehicle model and TDA-TVD are shown in Table 1. 

The simulated frequency response 𝜔𝐷𝑑𝑠 𝑇𝐷𝑖𝑛⁄  is shown in Figure 11. 

The proposed linear models have decent agreement with the nonlinear 

vehicle model above 1Hz on the gain diagram. In that case, the infinite 

load side inertia approximation model is enough to consider the higher 

frequency response. However, the infinite load side inertia 

approximation model has a considerable difference at the lower 

frequency region. Overall, the proposed linear model on the 

differential mode of TDA-TVD is reasonable to emulate the real 

hardware.  

The simulated frequency response 𝑇𝐷𝑑𝑠 𝑇𝐷𝑖𝑛⁄  is shown in Figure 12. In 

this figure, the realistic nonlinear model, the obtained linear model on 

the differential mode and the same linear model with the assumption 

𝐾𝐷𝐿 = 0, 𝐷𝐷𝐿 = 𝐷𝐿 . The latter linear model is convenient to design a 

joint torque vibration suppression controller since no parameters 

related to the tire are needed and therefore also compared here. 

Except for the difference of the peak amplitude at the resonance 

frequency around 2Hz, both linear models have decent agreement with 

the realistic nonlinear model. Thus, the linear model with the 

assumption 𝐾𝐷𝐿 = 0, 𝐷𝐷𝐿 = 𝐷𝐿 is used for the controller design. 

Frequency-domain System Identification of TDA-TVD on 

Summation-Differential Mode 

An experiment of the frequency response identification of a real TDA-

TVD unit was carried out. The TDA-TVD unit is connected with two 

individual load motor to emulate a vehicle translating and not turning, 

without the slip of wheels. The following parameters shown in エラ

ー! 参照元が見つかりません。  were used to get the frequency 

response of the obtained summation and differential models. 

 
Figure 11. Bode diagram of 𝜔𝐷𝑑𝑠 𝑇𝐷𝑖𝑛⁄  of TDA-TVD with infinite load 

inertia on differential mode (𝑉 = 10 m/s). 
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Figure 12. Bode diagram of TVD with infinite load inertia on differential mode 

(𝑉 = 10 m/s). 

The experimental results of the frequency response identification are 

shown in Figure 13(a) and Figure 13(b). The identified frequency 

responses are 𝜔𝑆𝑀 𝑇𝑆𝑀⁄  and 𝜔𝐷𝑀 𝑇𝐷𝑀⁄ . In both cases, the gain and 

phase diagrams show certain agreement between the experimental 

results and obtained linear models. The phase diagrams show the 

discrepancy at higher frequency and this is because of the 

communication delay of the measured data. 

Table 1. Nominal parameters of experimental vehicle with TDA-TVD unit.  
𝐾𝑠, 𝐷𝑚, 𝐷𝐿 , and  𝐷𝑠  are identified by fitting curves (Model) of 

Figure 13. These parameters are also used for the simulation.  

𝑀 2173 kg  

𝐽𝑀, 𝐽𝑤, 𝐼 0.0183, 1.81, 3308 kg ⋅ m2 

𝐾𝑠 2891 N/rad 

𝐷𝑚, 𝐷𝐿, 𝐷𝑠 0.078, 0.0625, 15 N/(rad⋅ s) 

𝑟, 𝑑, 𝑙𝑓, 𝑙𝑟 0.338, 1.54, 1.34, 1.33 m 

𝐺, 𝑏1, 𝑏2 10.8, 0.892, 0.895 

𝐶𝑓, 𝐶𝑟 45495, 53438 N/rad 

𝜆𝐷𝑛 0 

 
(a) Frequency response of 𝜔𝑆𝑀 𝑇𝑆𝑀⁄ . There are a resonance at 

6 Hz and  anti-resonance at 0.6 Hz in this model. 

 
(b) Frequency response of 𝜔𝐷𝑀 𝑇𝐷𝑀⁄  There is a resonance at 2 

Hz in this model. 

Figure 13. Frequency response of TDA-TVD on summation and differential 

modes. 

 

Figure 14. Decoupling compensator 𝑬 is inserted before TDA-TVD. 

The reason why the phase decreases at higher frequency in case of the 

experiments is because of sampling frequency of 100 Hz. The 

experiment of the system identification on differential mode was 

carried out on two frequency intervals from 0.01 to 1.0 Hz and 1.0 to 

100 Hz separately. That is the reason that the curves of the 

experimental data are not continuous at 1 Hz. 

TRds

TLds

g11

g12

TRin

TLin

e11

+

+

+

+

TDA-TVD
Decoupling 

Compensator E
+

+

+

+

g21

g22



Page 9 of 13 

SDMT enables us to construct vehicle dynamics controller much easier 

since we do not need to take the coupling between the left and right 

wheels into account. Now, two of vibration suppression controllers are 

proposed in this chapter. 

Design of joint torque controller 

Conventional Feedforward Controller using Decoupling 

Compensator 

The previous study designed a decoupling compensator 𝑬 based on an 

“ diagonalization” as shown in Figure 14 and the following parameters 

[
𝑒11 𝑒12

𝑒21 𝑒22
] = [

1 −𝑔12/𝑔11

−𝑔21/𝑔22 1
] (46) 

 

The previous study assumed a load inertia to be that of the summation 

mode, i.e., JRL = JLL = JSL, and DM = DL = 0. The transfer functions with 

the decoupling compensator E are obtained as follows 

[
 
 
 
𝑇𝑅𝑑𝑠

𝑇𝑅𝑖𝑛

𝑇𝐿𝑑𝑠

𝑇𝑅𝑖𝑛

𝑇𝑅𝑑𝑠

𝑇𝐿𝑖𝑛

𝑇𝐿𝑑𝑠

𝑇𝐿𝑖𝑛]
 
 
 

=

[
 
 
 
 

𝐽𝐿𝑆(𝐷𝑠𝑠 + 𝐾𝑠)

𝐽11𝐽𝐿𝑆𝑠
2 + 𝐷𝑠𝐽𝑋1𝑠 + 𝐾𝑠𝐽𝑋1

0

0
𝐽𝐿𝑆(𝐷𝑠𝑠 + 𝐾𝑠)

𝐽22𝐽𝐿𝑆𝑠
2 + 𝐷𝑠𝐽𝑋2𝑠 + 𝐾𝑠𝐽𝑋2]

 
 
 
 

 (47) 

 

swhere 𝐽𝑋1 = 𝐽11 + 𝐽𝐿𝑆 , 𝐽𝑋2 = 𝐽22 + 𝐽𝐿𝑆 . The joint torque control 

feedforward controller with the decoupling compensator (JTC-FF-E) 

was constructed by the inverse of the above equations multiplied by an 

additional filter in the same way (see Figure 15(b)). 

 
(a) Based on Summation-Differential mode transformation 

(Prop.). 

 
(b) Based on decoupling compensator E (Conv.). 

Figure 15. Implemented block diagrams of Joint torque controllers. 

Proposed Feedforward Controller using SDMT 

This section designs a joint torque vibration suppression control based 

on SDMT. We utilize (60) and (80) to construct the feedforward of the 

joint torque controller based on SDMT (JTC-FF-S(D)) given by 

𝐶𝐽𝑇𝐶−𝐹𝐹−𝑆 =
𝑇𝑆𝑖𝑛

𝑇𝑆𝑑𝑠

1

𝜏𝑠 + 1
=

𝑐3𝑠
3 + 𝑐2𝑠

2 + 𝑐1𝑠 + 𝑐0

(𝐽𝑆𝐿𝑠 + 𝐷𝑆𝐿)(𝐷𝑠𝑠 + 𝐾𝑠)(𝜏𝑠 + 1)
 (48) 

 

𝐶𝐽𝑇𝐶−𝐹𝐹−𝐷 =
𝑇𝐷𝑖𝑛

𝑇𝐷𝑑𝑠

1

𝜏𝑠 + 1
=

𝑑3𝑠
3 + 𝑑2𝑠

2 + 𝑑1𝑠 + 𝑑0

(𝐽𝐷𝐿𝑠 + 𝐷𝐿)(𝐷𝑠𝑠 + 𝐾𝑠)(𝜏𝑠 + 1)
 (49) 

 

where 𝜏 is a cutoff frequency of an additional filter to make the transfer 

functions proper. The overall block diagram of the joint torque 

controller including the coordinate transformation is shown in Figure 

15(a). 

Simulation of Joint Torque Vibration Suppression Control 

Step response simulations of the joint torque vibration suppression 

control are carried out in order to evaluate the performance of the 

controller based on SDMT. The simulated vehicle is running at 45 

km/h and the driveshaft torque reference of 300 Nm for summation 

and differential inputs. In other words, in the case of summation inputs, 

𝑇𝑅𝑑𝑠−𝑟𝑒𝑓 = 𝑇𝐿𝑑𝑠−𝑟𝑒𝑓 = 300 Nm and in the case of differential inputs, 

𝑇𝑅𝑑𝑠−𝑟𝑒𝑓 = −𝑇𝐿𝑑𝑠−𝑟𝑒𝑓 = 300 Nm. 

To evaluate the effectiveness of the proposed controller, three cases 

are compared; without any control (wo control), JTC based on SDMT 

(JTC-FF-S or JTC-FF-D), and JTC based on the normal mode with the 

decoupling compensator (JTC-FF-E). 

The simulation was carried out using MATLAB/Simulink 

environment. The parameters of the vehicle and TDA-TVD are the 

same with the previous simulations. There are no parameter 

differences between the actual vehicles and the controllers. 

 
(a) Right side driveshaft torque 𝑇𝑅𝑑𝑠  response (summation 

mode). Both JTC-FF 

 
(b) Right side driveshaft torque 𝑇𝑅𝑑𝑠  response (summation 

mode, zoom-in). 

TRds

TLds

TRM

TLM

TRin-ref
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TLds-ref
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TDA-TVD

JTC-FF-L
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(c) Right side driveshaft torque 𝑇𝑅𝑑𝑠  response (differential 

mode). 

Figure 16. Simulation of joint torque vibration suppression control. SDMT 

based JTC (JTC-FF-D) has better tracking performance than that of 

based on conventional normal mode (JTC-FF-E). 

Figure 16 shows simulated results on both the summation mode and 

differential mode. In each case, JTC based on SDMT has less vibration 

and less offset error compared to JTC-FF-E. 

 
Figure 17. Experimental vehicle equipped with TDA-TVD. TDA-TVD drives 

rear wheels using two electric motors. 

Experimental verification of joint torque 

vibration suppression control 

In this section, an experimental verification of the joint torque 

vibration suppression control is carried out. To evaluate the 

effectiveness of the proposed controller, three cases are compared; 

without any control (wo control), JTC based on SDMT (JTC-FF-S or 

JTC-FF-D), and JTC based on the normal mode with the decoupling 

compensator (JTC-FF-E). 

Experimental Conditions 

The following two scenarios are verified on a straight dry path, and the 

steering angle is held at 0 degree by a driver in the whole experiment. 

The first scenario is that the vehicle is driven by the differential 

driveshaft torque reference of 450 Nm when the vehicle is running at 

45 km/h. The second scenario is that the vehicle is accelerated by the 

summation driveshaft torque reference of 500 Nm when the vehicle is 

running at 20 km/h. 

The experimental vehicle with TDA-TVD is shown in Figure 17. The 

main parameters of the vehicle are given in Table 1. TDA-TVD drives 

rear wheels using two electric motors. The vehicle is also equipped 

with another single motor with ordinary open differential for front 

wheels, but they are not driven. The driving control unit uses 

MicroAutoBox (MAB) to output drive shaft torque command which is 

determined by accelerator opening degree and vehicle speed. MAB 

communicates with Motor Control Unit (MCU) by Controller Area 

Network (CAN) in a cycle of 10 ms. The controllers of JTC are 

implemented on the MCU. The drive shaft torque command is input to 

the JTC controllers through a low pass filter, whose cutoff frequency 

is 10 Hz. The torque command is calculated in a cycle of 1 ms. To 

protect TDA-TVD, the drive shaft torque command differential rate is 

limited by 1000 Nm/s. 

Experimental Results 

Fig. 18 shows the experimental results with different JTC controllers. 

As shown in Figure 18(a) the experimental results on differential mode, 

the drive shaft torque vibrates at 2 Hz when the differential torque is 

applied without control. It is caused by the torsional resonance of the 

drive shaft on the differential mode as shown in section IV. On the 

other hand, the vibration can be suppressed by the controller of JTC-

FF-E with tuned parameters. Even though JTC-FF-D with nominal and 

identified parameters in Table 1 and エラー! 参照元が見つかりませ

ん。 has a constant error about 100 Nm, it could be reduced by tuning 

the parameters during the experiment. The controller of JTC-FF-D 

(tuned) obtained almost the same vibration suppression performance 

with JTC-FF-E (tuned). 

 
(a) Differential mode. 

 
(b) Summation mode. 

Figure 18. Experimental results of Joint Torque Vibration Suppression. While 
the proposed JTC-FF-D and the conventional JTC-FF-E equally 
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suppress the vibration and the offset error, the JTC-FF-S has less 

offset error compared to the JTC-FF-E. 

Figure 18(b) shows the experimental results with different JTC 

controllers on summation mode. The drive shaft torque vibrates at 6 

Hz when the summation torque is applied. It is caused by the torsional 

resonance of drive shaft on summation mode. Even though the 

vibration can be suppressed by the controllers of JTC-FF-E with the 

parameters tuned in the differential experiment, there is a constant 

error about 30 Nm. It means that JTC-FF-E cannot handle both 

summation and differential modes simultaneously. On the other hand, 

this constant error can be reduced to about 10 Nm by tuning the 

parameters of JTC-FF-S. Comparing with JTC-FF-E, there is lower 

model error in JTC-FF-S and JTC-FF-D by tuning the parameters 

independently. The overall results indicate the validity of the SDMT 

based model and controllers effectively. The improvement of the 

torque control will result in better acceleration/deceleration control, 

yaw rate control (less deviation and vibration) and better driving 

stability.  

Future Work  

The simulations and experiments in this study assumed no 

discrepancies in the model parametrization. Practically, the vehicle 

mass 𝑀 and load inertia 𝐽𝐿 are the major parameters which can change 

considerably. The change of the vehicle mass could be relatively easily 

monitored and compensated by comparing input torques and a 

measured longitudinal acceleration.  On the other hand, the load inertia 

𝐽𝐿 can decrease when wheels slip. To deal with this, preventing slip 

ratio from exceeding a certain value (e.g. 10%) by employing a traction 

control, or estimating slip ratio and vary the parameter of the joint 

torque controller accordingly, would be potential strategies.  

Evaluations of drivability, ride comfort, and cornering performance 

(e.g., double lane change test), along with design and implementation 

of feedback controllers (slip ratio control, direct yaw moment control, 

etc.) are to be carried out in the future. 

Conclusion 

This study demonstrated a frequency domain analysis of TDA-TVD 

with a newly proposed linear model of TDA-TVD that well describes 

the longitudinal motion and yaw motion (summation-differential 

mode). The experimentally obtained frequency responses of TDA-

TVD based on the summation-differential mode transformation 

showed descent agreement with the new model, while the responses 

based on a conventional normal mode did not match with a 

conventional model. Next, a driveshaft torque vibration suppression 

controller is designed based on the inverse model of the summation 

and differential modes. The simulation and experimental results of step 

torque inputs on both summation and differential modes suggested that 

the feedforward vibration suppression controller based on the new 

model has better performance in suppressing vibrations and reducing 

offset errors, compared to the conventional controller, which cannot 

the reduce offset error on the summation mode. 

Design and integration of feedback controllers (such as ones seen on 

[27]) and further evaluations of the proposed methods on drivability, 

ride comfort, and cornering performance will be our future work. 
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Definitions/Abbreviations 

M Mass of vehicle (including 

passengers and on board 

loads) 

I Yaw inertia of vehicle 

r Effective radius of wheel 

lf, lr Distance between the front or 

rear axle and the longitudinal 

center of gravity 

Cf, Cr Cornering stiffness of front or 

rear wheel 

d Tread 

J R(L)ω, J R(L)M, J 

R(L)L 

Inertia of wheel, motor, and 

nominal load (R: right side, L: 

left side) 

G R(L), G Primary reduction gear ratio 

and its formulated diagonal 

2x2 matrix 

b1, b2 Equivalent secondary 

reduction gear ratio 

B A 2x2 matrix which 

represents differential torque 

amplitude 

PL, PM, Pds 2x2 diagonal matrices which 

represent dynamic model 

(transfer function) of load, 
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motor, and driveshaft 

respectively 

KR(L)s Stiffness of driveshaft 

DR(L)s, DR(L)M, 

DR(L)L 

Damping coefficient of 

driveshaft, motor, and wheel 

TR(L)M, TM Input motor torque and its 

formulated 1x2 vector 

TR(L)Dm Input motor torque after 

primary gear reduction 

TR(L)m Transmitted motor torque to 

planetary gears 

TR(L)in, Tin Input motor torque converted 

to driveshaft side and its 

formulated 1x2 vector 

TR(L)ds, Tds Driveshaft torque after 

secondary gear reduction and 

its formulated 1x2 vector 

TR(L)L, TL Load torque and its 

formulated 1x2 vector 

ωR(L)M, ωM Motor side angular speed 

before gear reduction and its 

formulated 1x2 vector 

ωR(L)m, ωm Motor side angular speed 

after gear reduction and its 

formulated 1x2 vector 

ωR(L)ds, ωds Driveshaft side angular speed 

and its formulated 1x2 vector 

ωR(L)L, ωL Wheel angular speed and its 

formulated 1x2 vector 

V Vehicle body speed 

γ Yaw rate 

β Sideslip angle of vehicle 

body 

ay Lateral acceleration 

δf Steering angle 

λR(L) Slip ratio 

s Laplace transformation 

operator 

 


