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Abstract: This paper considers discrete-time nonlinear Lipschitz systems with unknown but
bounded disturbances. Thanks to the existence of bounding decomposition functions for mixed
monotone mappings and the Lyapunov approach, we present a functional interval observer to
achieve stable upper and lower bounds for a linear function of the system state. The simulation
on a numerical example is given to illustrate the theoretical results.
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1. INTRODUCTION

In recent years, interval observers have enjoyed tremen-
dous progress in the control community due to their simple
design and promising performance to put bounds on state
of systems which are affected by fluctuating uncertainties.
Different from traditional observers like Luenberger ob-
server which only give a point estimate as time tends to
infinity, interval observers offer some guarantees during
transient periods. Indeed, they provide us with readily
usable estimate at any time instant, even when system
parameters or disturbances are changing or large. Thus,
they can satisfy an important requirement of estimation in
application which is to monitor and detect system faults
(Chevet et al. (2021)).

Under the assumptions that the initial conditions and dis-
turbances are unknown but bounded, the idea of interval
observers is to provide two observers: the first one is always
higher than the true state while the second one is always
lower. The construction of such an observer is directly or
indirectly based on positive systems (Gouzé et al. (2000)).
Some works on interval observers are devoted to vari-
ous families of one-dimensional (1D) and two-dimensional
(2D) linear systems (Chevet et al. (2022); Mazenc et al.
(2014)), bilinear systems (Dinh and Ito (2016)), linear
parameter varying (LPV) (Ellero et al. (2019)), linear
switched systems (Dinh et al. (2020a)) or even to some
classes of nonlinear systems with some restrictions (Räıssi
et al. (2011); Dinh et al. (2014); Ito and Dinh (2020)).

In parallel, functional observers have been considered
(Trinh and Fernando (2012)). In practice, the observation
object usually belongs to a linear function of the state
vectors (e.g., the measured part of the system state is

regularly a linear function of the state). Consequently,
for some use case scenarios, we only need to estimate
the linear function of the state variables instead of esti-
mating themselves. This helps to reduce the complexity
and the order of the observer design. In the framework of
functional interval observer design, (Gu et al. (2018)) is
devoted to linear continuous-time systems, and then is ex-
tended to other classes such as discrete-time linear systems
(Che et al. (2020)), multivariable linear systems (Meyer
(2019)), fractional-order systems (Huong and Yen (2020)),
switched descriptor systems (Huang et al. (2022)) and so
on. However, To the best of our knowledge, no functional
interval observer has been proposed for Lipschitz systems
for which many constructions of asymptotic observers (see
for instance (Dinh et al. (2015))) and interval observers
(see for instance (Meyer et al. (2018); Khajenejad and
Yong (2020))) have been proposed. It motivates the contri-
bution of the present paper: to design a functional interval
observer for a class of Lipschitz systems. By assuming the
existence of bounding decomposition functions for mixed
monotone mappings, a framer for a linear function of the
state can be constructed. Next, a Lyapunov approach is
employed to give sufficient conditions to ensure the stabil-
ity of the mentioned framer.

The remainder of the present paper is organized as follows.
General preliminaries are presented in Section 2. In Section
3, the proposed Lipschitz system and assumptions on the
considered plant are discussed. The design procedure for
the functional interval observer as well as the proposed
stability conditions are introduced in Section 4. Section
5 proposes a numerical simulation, which illustrates the
mathematical results. Finally, Section 6 gathers concluding
remarks and perspectives.



2. PRELIMINARIES

The identity matrix is denoted by I. A null matrix 0 is a
matrix all of whose entries are zero. The Euclidean norm of
a vector x ∈ Rn and a matrix M ∈ Rn×m are respectively
denoted by ∥x∥ and ∥M∥. Inequalities must be understood
component-wise, i.e., for xa = [xa,1, ..., xa,n]

⊤ ∈ Rn and
xb = [xb,1, ..., xb,n]

⊤ ∈ Rn, xa ≤ xb if and only if, for
all i ∈ {1, ..., n}, xa,i ≤ xb,i. For a matrix M ∈ Rn×m,
we define M+, M−, and the matrix of absolute values of
all elements |M | by M+ = max (M, 0), M− = M+ −M ,
|M | = M+ +M−.

Next, we introduce some definitions and lemmas which are
useful for the functional interval observer design.

Lemma 1. (Efimov et al., 2013, Section IIA) Consider
vectors x, x, x in Rn such that x ≤ x ≤ x and a constant
matrix A ∈ Rm×n, then

A+x−A−x ≤ Ax ≤ A+x−A−x, (1)

with A+ = max{0, A}, A− = A+ −A.

Definition 1. (Yang et al., 2019, Definition 4) A mapping
F : Rn → Rm is mixed monotone if there exists Fc : Rn ×
Rn → Rm such that

(1) Fc(α, α) = F(α).
(2) For a fixed second argument, Fc is nondecreasing

with respect to its first argument, i.e., α1 ≤ α2 ⇒
Fc(α1, β) ≤ Fc(α2, β).

(3) For a fixed first argument, Fc is nonincreasing with
respect to its second argument, i.e., β1 ≤ β2 ⇒
Fc(α, β1) ≥ Fc(α, β2).

The function Fc is called a decomposition function of F .

Lemma 2. Let F : Rn → Rm be mixed monotone and
Fc : Rn ×Rn → Rm be a decomposition of F . Given α, α,
α in Rn such that α ≤ α ≤ α. Then,

Fc(α, α) ≤ F(α) ≤ Fc(α, α). (2)

Proof. From Definition 1, the proof is obvious.

3. PROBLEM STATEMENT

Consider the nonlinear systems with bounded disturbances

x(k + 1) = Ax(k) + F(Πx(k)) + w(k), (3)

y(k) = Cx(k) (4)

where A ∈ Rnx×nx , C ∈ Rny×nx , Π ∈ Rng×nx are known
matrices, x(k) ∈ Rnx and y(k) ∈ Rny are respectively
the state and the output. The disturbance w(k) ∈ Rnx is
supposed unknown but bounded by known values, i.e.,

w ≤ w(k) ≤ w, (5)

where w, w are known vectors. The function F : Rng →
Rnx is known globally Lipschitz. Without loss of generality,
we assume that nx ≥ ny ≥ 1. Moreover, the initial
condition at the instant k = 0 is assumed to be bounded
by two known bounds

x(0) ≤ x(0) ≤ x(0). (6)

Remark 1. • All the results of this paper can be ex-
tended straightforwardly to the case where the matrix
A and the function F depend on k explicitly as well
as the input and the measurement noise are present.

• The class of nonlinear system described by (3) and
(4) can cover a wide range of practical applications,

especially the mechatronics system driven by multiple
electric motors (vehicles, drones, propeller systems
etc.). In such systems, the forces/torques on the
machine’s body is commonly described by a nonlinear
function of the motion variables of the local motor
actuators. A typical example is the electric vehicle
driven by in-wheel motors (Nguyen et al. (2019);
Pacejka (2005)).

• The system (3) is more general than the family of
nonlinear discrete-time systems presented in (Dinh
et al. (2020b)). If we choose Π = C, (3) reduces to
the considered system in (Dinh et al. (2020b)).

Assumption 1. Functions F is mixed monotone with de-
composition functions Fc.

Assumption 2. For all h1, h2 in Rng , there exists a strictly
positive constant LF such that

∥F(h1)−F(h2)∥ ≤ LF∥h1 − h2∥. (7)

F is then called a globally LF -Lipschitz continuous func-
tion.

Lemma 3. Let F : Rng → Rnx be globally LF -Lipschitz
and mixed monotone with decomposition function Fc :
Rng × Rng → Rnx . Given h = [h1, ..., hn]

T , h =
[h1, ..., hn]

T , h = [h1, ..., hn]
T ∈ Rng satisfying h ≤ h ≤ h.

Then

Fc(h, h) = F(z1) + CF (h− h), (8)

Fc(h, h) = F(z2) + CF (h− h), (9)

with CF ∈ Rnx×ng is computed in (Yang et al., 2019, The-
orem 2), where z1 = [z1,1, ..., z1,n]

T , z2 = [z2,1, ..., z2,n]
T ∈

Rng and for all i ∈ {1, ..., n}, z1,i and z2,i are either hi or
hi given in (Yang et al., 2019, Theorem 2).

Furthermore,

∥Fc(h, h)−Fc(h, h)∥ ≤ (LF + 2∥CF∥) ∥h− h∥. (10)

Proof. The equalities (8) and (9) are results from (Yang
et al., 2019, Theorem 2). Since h ≤ h ≤ h and for
all i ∈ {1, ..., n}, z1,i and z2,i are either hi or hi, then

h ≤ h, z1, z2 ≤ h. Consequently, we obtain

∥z1 − z2∥ ≤ ∥h− h∥. (11)

Combining (8) and (9) and by applying the triangle
inequality we have

∥Fc(h, h)−Fc(h, h)∥
= ∥F(z1)−F(z2) + 2CF (h− h)∥
≤ ∥F(z1)−F(z2)∥+ 2∥CF∥∥h− h∥.

Because F is globally LF -Lipschitz continuous, from As-
sumption 2 we dedcue that

∥Fc(h, h)−Fc(h, h)∥ ≤ (LF + 2∥CF∥) ∥h− h∥.
Thanks to (11), we can conclude (10).

Definition 2. The following dynamics for all k ≥ 0{
g(k + 1) = G(g(k), y(k),Fc(h(k), h(k)), w, w),

g(k + 1) = G(g(k), y(k),Fc(h(k), h(k)), w, w),
(12)

associated with the initial conditions g(0) = G0(x(0), x(0)),
g(0) = G0(x(0), x(0)), and with outputs




h(k) = H(g(k), g(k), y(k)),∀k > 0,

h(k) = H(g(k), g(k), y(k)),∀k > 0,

h(0) = H0(x(0), x(0)),

h(0) = H0(x(0), x(0)),

(13)

where w, w are defined in (5); x(0), x(0) are defined in
(6); Fc is defined in Definition 1; G, G, G0, G0, H, H, H0,
H0 are functions in Rng , are called a functional interval
observer for the linear function of the state of (3)

h(k) = Πx(k), with the matrix Π given in (3) (14)

if

(1) h(k) ≤ h(k) ≤ h(k) for all k > 0,
(2) lim

k→∞
∥H(g(k), g(k), y(k)) − H(g(k), g(k), y(k))∥ = 0

when w(k) = 0 for all k ∈ N.
Remark 2. • Different from the definition of interval

observer in (Mazenc et al. (2014)), the functional
interval observer only recovers the linear function of
the state variables, which can reduce the order and
complexity of the observer construction (Che et al.
(2020)).

• Interestingly, if we take the specific case where Π =
I, (13) becomes a new interval observer design for
the nonlinear Lipschitz system x(k + 1) = Ax(k) +
F(x(k)) + w(k). This design is totally different from
existing results (Meyer et al. (2018); Khajenejad and
Yong (2020)) in the literature. The specific case is
simulated in the Section 5.

• For the design simplicity, we consider the same matrix
Π in (3) and (14). The extension to two different
matrices is not difficult and follows the same routine
given in Section 4.

Goal. Given the nonlinear system (3) with the measure-
ments (4), we design a functional interval observer which
estimates the linear function of the state variables (14).

4. FUNCTIONAL INTERVAL OBSERVER DESIGN

In this section, we arrive at the above-mentioned goal
by proposing two stable bounds h(k) and h(k) for the
linear function of the state x(t). In the theory of interval
observer, we have to achieve two properties: (i) framer
property which is the notion of providing intervals in which
state variable stay and (ii) stability property which cares
the length of estimated intervals.

Theorem 1. (Framer property). Let Assumption 1 hold.
Consider the nonlinear system (3) with the measurement
(4) and the dynamic extension as follows

g(k + 1) = Dg(k) + Jy(k) +R+Fc(h(k), h(k))

−R−Fc(h(k), h(k)) +R+w −R−w,∀k ≥ 0,
(15)

g(k + 1) = Dg(k) + Jy(k) +R+Fc(h(k), h(k))

−R−Fc(h(k), h(k)) +R+w −R−w,∀k ≥ 0,
(16)

h(k) = S+g(k)− S−g(k) +Ny(k),∀k > 0, (17)

h(k) = S+g(k)− S−g(k) +Ny(k),∀k > 0, (18)

associated with the initial conditions

g(0) = R+x(0)−R−x(0), (19)

g(0) = R+x(0)−R−x(0), (20)

h(0) = Π+x(0)−Π−x(0), (21)

h(0) = Π+x(0)−Π−x(0), (22)

where w, w, x(0), x(0) and Π are respectively defined in
(5), (6) and (14), D ∈ Rng×ng , J ∈ Rng×ny , R ∈ Rng×nx ,
S ∈ Rng×ng , N ∈ Rng×ny are design parameters to be
determined. If (5) and (6) hold,D is a nonnegative matrix,
and the following equations

RA−DR = JC, (23)

Π = SR+NC, (24)

are satisfied, then (17)-(18) are a framer for (3) satisfying
h(k) ≤ h(k) = Πx(k) ≤ h(k) for all k ≥ 0.

Remark 3. Conditions (23) and (24) are not selective (Che
et al., 2020, Lemma 5-6):

• Given a nonnegative matrix D ∈ Rng×ng whose
eigenvalues are different from those of A in (3) and
a matrix J ∈ Rng×ny , there always exists a unique
matrix R ∈ Rng×nx satisfying the Sylvester equation
(23).

• Given two arbitrary matrices Π ∈ Rng×nx and R ∈
Rng×nx . If a matrix S ∈ Rng×ng is chosen such that

rank

[
C

Π− SR

]
= rankC = ny with C defined in

(4), then there always exists a matrix N ∈ Rng×ny

satisfying the equation (24).

Proof. Let eg(k) = g(k) − Rx(k) and eg(k) = Rx(k) −
g(k). Then from (3)-(4), (15), (16) and bearing in mind
(14), we have

eg(k + 1) = Dg(k) + JCx(k)−RAx(k)

+ Fc(h(k), h(k))−RF(h(k)) +W (k), (25)

eg(k + 1) = RAx(k)−Dg(k)− JCx(k)

+RF(h(k))−Fc(h(k), h(k)) +W (k), (26)

where

Fc(h(k), h(k)) = R+Fc(h(k), h(k))−R−Fc(h(k), h(k)),
(27)

Fc(h(k), h(k)) = R+Fc(h(k), h(k))−R−Fc(h(k), h(k)),
(28)

W (k) = R+w −R−w −Rw(k), (29)

W (k) = Rw(k)− (R+w −R−w). (30)

Thanks to (23), it follows that

eg(k + 1) = Deg(k) + Fc(h(k), h(k))−RF(h(k)) +W (k),

(31)

eg(k + 1) = Deg(k) +RF(h(k))−Fc(h(k), h(k)) +W (k).

(32)

Let eh(k) = h(k) − h(k), eh(k) = h(k) − h(k). Now,
we prove by induction that for all k ≥ 0, eg(k) ≥ 0,
eg(k) ≥ 0, eh(k) ≥ 0, eh(k) ≥ 0. According to (6), (19),
(20), (21), (22) and Lemma 1, the property is satisfied
at the instant 0, i.e, eg(0) ≥ 0, eg(0) ≥ 0, eh(0) ≥ 0,
eh(0) ≥ 0. Assume that it is satisfied at the step k > 0.
Lemma 2 and the fact that h(k) < h(k) < h(k) imply that
Fc(h(k), h(k)) ≤ F(h(k)) ≤ Fc(h(k), h(k)). So, by using
Lemma 1, one can easily deduce that Fc(h(k), h(k)) ≤



RF(h(k)) ≤ Fc(h(k), h(k)). From (5) and Lemma 1, we
have W (k) ≥ 0 and W (k) ≥ 0 for all k ≥ 0. Additionally,
the matrix D is nonnegative. Thus, from (31) and (32), it
follows that eg(k + 1) ≥ 0 and eg(k + 1) ≥ 0. Hence,

g(k + 1) ≤ Rx(k + 1) ≤ g(k + 1). (33)

By left multiplying (34) by nonnegative matrices S+ and
S− and bearing in mind (17), (18), we get

h(k + 1)−Ny(k + 1) ≤ SRx(k + 1) (34)

≤ h(k + 1)−Ny(k + 1).
(35)

According to (24), SR = Π−NC. Therefore,

h(k + 1) ≤ Πx(k + 1) ≤ h(k + 1). (36)

Consequently, eh(k + 1) ≥ 0, eh(k + 1) ≥ 0 and the
induction assumption is satisfied at the step k + 1.

Theorem 2. (Stability property). If Assumptions 1-2 are
satisfied and there exist a positive definite matrix P and
a positive constant εF such that

DT
(
P + ε−1

F P |R||R|TP
)
D − P

+
(
εF + ∥R∥2∥P∥

)
L2
cF∥S∥2I ⪯ 0, (37)

with LcF = LF+2∥CF∥ where LF and CF are respectively
defined in Assumption 2 and Lemma 3. Then, the framer
proposed in (17)-(18) becomes functional interval observer
for the linear function Πx(k) of the state of (3).

Proof. From (17) and (18), we have for all k > 0,

h(k)− h(k) = |S|
(
g(k)− g(k)

)
. (38)

Remark that lim
k→∞

∥g(k) − g(k)∥ = 0 ⇔ lim
k→∞

∥h(k) −
h(k)∥ = 0. Therefore, to prove the stability of the framer
(17)-(18), we need to prove that if the condition (37)
holds, then when w(k) = 0 for all k ∈ N, lim

k→∞
∥g(k) −

g(k)∥ = 0. Let ∆(k) = g(k) − g(k). Using (15) and (16),
when w(k) = 0 for all k ∈ N, ∆(k+1) can be rewritten as

∆(k + 1) = D∆(k)

+ |R|
[
Fc(h(k), h(k))− Fc(h(k), h(k))

]
. (39)

Lyapunov approach (Khalil (2002)). We consider a
Lyapunov function candidate V (k) = ∆(k)TP∆(k), where
P ≻ 0 and the goal is to find a condition such that
V (k + 1)− V (k) < 0.

Consider the system (39), we have

V (k + 1)− V (k) = ∆T (k)(DTPD − P )∆(k)

+ 2∆T (k)DTP |R|
[
Fc(h(k), h(k))−Fc(h(k), h(k))

]
+
[
Fc(h(k), h(k))−Fc(h(k), h(k))

]T |R|TP |R|
×
[
Fc(h(k), h(k))−Fc(h(k), h(k))

]
.

Thanks to Lemma 3, a positive constant LcF = LF +
2||C||F can be computed such that

||Fc(h(k), h(k))−Fc(h(k), h(k))|| ≤ LcF ||h(k)− h(k)||
= LcF∥S∥∥∆(k)∥.

It follows that for any constant εF > 0,

V (k + 1)− V (k) ≤∆T (k)(DTPD − P )∆(k)

+ ε−1
F ∆T (k)DTP |R||R|TPD∆(k)

+
[
Fc(h(k), h(k))−Fc(h(k), h(k))

]T
×
[
Fc(h(k), h(k))−Fc(h(k), h(k))

]
×
(
εF + ∥R∥2∥P∥

)
≤∆T (k)(DTPD − P )∆(k)

+ ε−1
F ∆T (k)DTP |R||R|TPD∆(k)

+
(
εF + ∥R∥2∥P∥

)
L2
cF∥S∥2∥∆(k)∥2.

Based on the above analysis, V (k + 1)− V (k) < 0 if (37)
holds.

5. NUMERICAL EXAMPLE

We apply Theorem 1-2 to the nonlinear Lipschitz system

x(k + 1) =
1

4
x(k) +

1

8
sin

(
1

4
x(k)

)
+ w(k), (40)

y(k) = x(k), (41)

with x(k) ∈ R, C = 1, A = Π = 1
4 and F(Πx(k)) =

1
8 sin

(
1
4x(k)

)
, where w(k) = 1

4 cos(2k) represents distur-
bances.

To verify Assumption 1, we select the function Fc : R2 →
R

Fc(a, b) =
1

8
a+

1

8

(
sin

(
1

4
b

)
− b

)
, (42)

which is such that

Fc(a, a) = F(a), ∀a ∈ R, (43)

and is nondecreasing with respect to the variable a and
nonincreasing with respect to the variable b.

Choosing S = 1
8 , N = 1

8 , R = 1, D = 1
8 > 0 and J = 1

8 ,
the conditions (23) and (24) are satisfied.

Next, we verify the stability condition (37). We deduce
from (42) that for all h, h ∈ R,Fc(h, h) = 1

8 (h − h) +
1
8 sin

(
1
4h

)
so CF = 1

8 . From the numerical example

(40), we have LF = 1
32 . By using the positive defini-

tive quadratic function V (k) = x2(k) (i.e., P = 1)
and choosing εF = 1

2 , one can easily conclude that

DT
(
P + ε−1

F P |R||R|TP
)
D − P +

(
εF + ∥R∥2∥P∥

)
(Lf +

2Cf )
2∥S∥2I < 0.

We present the following simulation with the initial con-
dition h(0) = 1

4x(0) =
1
4 × 1 = 1

4 , x(0) = 1.5, x(0) = 0.5,

h(0) = 1
4 × 1.5 = 0.375, h(0) = 1

4 × 0.5 = 0.125, and

w = −w = 1
4 . Figure 1 gives the linear function h = Πx of

the solution x and the bounds provided by the functional
interval observer (17)-(18).

The simulation confirms the mathematical result: the
linear function h(k) lies in the upper bound h(k) and the
lower bound h(k) in the presence of disturbance w(k).

Specific case where Π = I. The system (40) becomes

x(k + 1) =
1

4
x(k) +

1

8
sin (x(k)) + w(k). (44)

Choosing S = 1
8 , N = 7

8 , R = 1, D = 1
8 > 0 and J = 1

8 ,
a new interval observer design for the system (44) which
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Fig. 1. Functional interval observer (17)-(18) for the nu-
merical example (40)-(41).

is different from existing results in the literature can be
proposed as follows

g(k + 1) =
1

8

[
g(k) + y(k) + h(k) + (sin (h(k))− h(k))

]
+ w, ∀k ≥ 0,

(45)

g(k + 1) =
1

8

[
g(k) + y(k) + h(k) +

(
sin

(
h(k)

)
− h(k)

)]
+ w, ∀k ≥ 0,

(46)

x(k) =
1

8
g(k) +

7

8
y(k), ∀k > 0, (47)

x(k) =
1

8
g(k) +

7

8
y(k), ∀k > 0. (48)

Similarly to the general case above, the stability condition
(37) is satisfied. We present the following simulation with
the initial condition x(0) = 1, x(0) = 1.5 x(0) = 0.5, and
w = −w = 1

4 . Figure 2 gives the solution x of (44) and the
bounds provided by the interval observer (47)-(48).
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Fig. 2. Interval observer (47)-(48) for the numerical exam-
ple (44)-(41).

For this specific case, the solution x(k) is framed between
the tight interval [x(k) x(k)]. We can see that the accuracy
of the proposed interval observer is very good in the
presence of disturbance w(k).

6. CONCLUSION

The main contribution of this paper is to design a func-
tional interval observer for a linear function of the state
of a nonlinear Lipschitz system affected by unknown but
bounded disturbances. Thanks to a decomposition func-
tion of the mixed monotone mapping and Lyapunov ap-
proach, the observer is provided and the interval error is
proved to be input-to-state stable. For future work, we
will extend the result for a more general class of nonlinear
systems and will consider unknown inputs.

REFERENCES

Che, H., Huang, J., Zhao, X., Ma, X., and Xu, N. (2020).
Functional interval observer for discrete-time systems
with disturbances. Applied Mathematics and Computa-
tion, 383, 125352.

Chevet, T., Dinh, T.N., Marzat, J., and Räıssi, T. (2021).
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