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In control systems where fast and precise operation is required, it is essential to implement control system consid-
ering parameter fluctuations, especially if the state of the manufactured object changes in the process. On the other
hand, outliers may be included in the measurement values when estimating parameters, and robust control algorithm
which can deal with these issues is required. This paper aims to apply the approach of batch least squares, where the
parameters are estimated in a setting window based on least squares algorithm, and achieve precision control that is
robust to parameter fluctuations and outliers. We adopt Huber and Tukey Regression as the method for parameter re-
gression. The effectiveness of the proposed method is verified in simulation and experiments, and a 12.7% performance
improvement is achieved compared to the conventional recursive method.
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1. Introduction

Manufacturing industry is supported by high production
technology using automated machines. To achieve such high
productivity, it is essential to move the tools and tables used
in the machine as quickly, and also precisely with an accuracy
of less than a micrometer as possible. Machines tools, one
of the most popular automated machines as shown in Fig. 1,
also require further acceleration and precision improvement
to shorten processing time and improve tracking accuracy .

To improve the response speed of the control system, it is
required to implement feedforward (FF) control ®~®. Multi-
rate perfect tracking control (PTC) has been proposed to real-
ize zero-error at every sampling period with identified nom-
inal parameters® ©. However, in machine tools, the mass
of the cutting target and the stage positions change during
manufacturing. These disturbances are typically compen-
sated by feedback controllers ?®; however, some situations
cause large parameter errors of the plant model, which has
a significant impact on the performance of the FF controller.
To solve this issue, multirate adaptive PTC, where parame-
ter estimation is conducted and controllers are updated based
on the estimation, has been proposed ©. However, it happens
that the estimated value fluctuates greatly when the outliers
are included in the measured values. It is required to perform
parameter estimation considering it.

In general, it is essential to accurately estimate the state
variables for motion control, and various research has been
conducted for a long time. One of the most popular estima-
tion methods is the Kalman filter, which is being practically
applied in state estimation for quite a lot of applications, such
as spacecraft, robots, and many drive systems **"?. On the
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Figure 1: Machine tools used in manufacturing field as auto-
mated machines 7.

other hand, it has been pointed out that the Kalman filter is
difficult to apply in systems with disturbances that do not fol-
low a normal distribution. To solve these problems, Moving
Horizon Estimation, which estimates the state variables based
on the concept of least squares for a certain time width of
measurement values, has been proposed ¥. This method is
widely used for model predictive control in the field of con-
trol theory because it is easier to set long time spans com-
pared to other methods 9.

In this paper, we aim to apply window-based least
squares approach and perform parameter estimation for high-
precision control including outliers in measured values. Hu-
ber and Tukey regression, rapidly growing method in the field
of machine learning, are adopted as optimization methods
for parameter estimation, and the tracking performance of
the proposed method is verified against conventional adaptive
control method with Recursive Least Squares (RLS) through
simulations and experiments.

The remainder of the paper is organized as follows. In sec-
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Figure 3: Bode diagram of testbench from drive side motor
current to drive side angular velocity.

tion II, the nominal model and PTC as the basic FF controller
targeted in this paper are introduecd. In section III, the pro-
posed estimation method based on Huber and Tukey regres-
sion is introduced. In section IV and V, the proposed method
is verified through the simulations and experiments. Finally,
the paper is concluded in section VI, with some future studies.

2. Problem Formulation

2.1 Modeling In this paper, the simplest SISO sec-
ond order system represented by below is considered as a
plant model:

1
~ Js2+Ds’ M

The experiment is conducted using a two-inertia system test
bench shown in Fig. 2, by applying the same current in op-
posite directions to the drive and load side motor to realize
Eq.(1) in experimental setups. The drive side motor current
is considered as the control input, and the speed of the drive
side motor is regarded as the output. The system identifica-
tion is conducted based on Eq.(1), and determined parameters
are shown in Table. 1.

2.2 Perfect Tracking Control In this paper, multi-
rate PTC is adopted as a FF controller to improve the tracking
performance. In this section, formulation of PTC is derived.

As mentioned in the previous section, since we are consid-
ering a second-order plant this time, the state equation that
can be derived from the transfer function of Eq.(1) is given
by

T, =2T, =21,
Figure 4: Image diagram of multirate holder for perfect track-
ing controller.

x(t) = Acx(?) + bcu(t)’ ()
y(0) = ¢.x(1) + deu(t), (3)

w0=[so] 2=[0 _5)

0
bc:[K,/J}’ ccz[O

There are three sampling period, T, T, and T, which rep-
resents reference period, input period, output period, respec-
tively. Because of the order of the plant is two, the relation-
ship of the three sampling period is T, = 2T, = 2T, as shown
in Fig. 4.

The state-space equation discretized at T, is described as

1], d. =0.

x[k + 1] = Agx[k] + byulk], 4)
ylkl = cqx[k] + dyulk], (5)
Tu
x[k] = [f)[[']‘(]]} Ag=erTe by = J; eATh dr.

The state-space equation of mulirate plant can be defined
as

x[k+2] = Agx[k + 1] + byulk + 1],
= Ad(Adx[k] + bdu[k]) + bdu[k + 1],

ulk]

uk+ |- ©

= A2x[k] + [Adbd bd]

and Eq.(6) is expressed in time period of T as shown in Fig.
4:

xgli + 1] = Axyli] + Buli) (7)
A=A}
B=[Asb, bl

Assuming the system is controllable, the multiplicity of
the input is equal to the order of the system, so B is regu-
lar. Therefore, the control input can be obtained from

uli] = B™' (x4[i + 1] - Ax,[il)
=B (I -7 "A)xyli + 1] (8)
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Figure 5: Block diagram of the proposed method.

2.3 Adaptive PTC Using the parameter estimated by
RLS @, or the algorithm described next section, the PTC in-
put corresponding to the time-varying model can be obtained
as below with symbols & as estimation values:

uli] = B (xgli + 11— Axyli])
=BT - Axgli + 1 9)

3. Parameter Estimation with Robust Regression

This section outlines parameter estimation algorithm using
a robust learning method that is less susceptible to the influ-
ence of outliers. Fig. 5 shows a block diagram of the pro-
posed method. The proposed estimation method is applied to
get the updated parameters for the adaptive PTC block.

In ordinary least squares, there is a problem that the es-
timated value becomes strange if there are outliers because
it uses [, loss. In this study, parameter estimation methods
using Huber and Tukey regression, representative methods of
robust learning in the field of machine learning, are proposed.

3.1 Huber Regression Huber loss is described as

r (I <
3 Huber)

PHuber(1) = e (10)
Huberr| — 5 (Irl > anuber)

where r and ayyper are residual and threshold. Eq.(10) means
that if the residual is below the threshold, loss function be-
comes an [, loss, and if it is above the threshold, it becomes
an [, loss. In other words, when the residual exceeds the
threshold, it is considered an outlier and the loss becomes
smaller. The learning method using Eq.(10) is Huber loss
minimization learning, which is represented as

B = n}gin J(ﬁ), J(ﬂ) = z";’:1/31—{uber(ri) (1 1)

By using Iterative Reweighed Least Squares learning (IRLS),
the following weighted least squares learning can be obtained
as a minimization problem for the upper bound.

. L 1
B = argminJ(B), J(B) = EZ;’:lw,-r,-z +C (12)
B

where C = Zij > apupe (@Huberl7il /2 — a/Ierube ./2) is constant that
does not depend on . The weight w; is defined as

1 (lri| < a’Huber)
Wi =Y g (13)
= (il > amuer)
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Figure 6: The loss function when the threshold is set to 1.
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Figure 7: The weight function when the threshold is set to 1.

The solution to the weighted least squares method can be
obtained as follows

B =@ Wo)'o"wy (14)

where W = diag(wy, - , wy) represents the weight matrix.
M represents the length of the data for calculation. ® is a
matrix with M rows and three columns.

3.2 Tukey Regression Tukey loss is described as

2
CJa-- P (1 < anie)
pTukey(r) - 2 Tukey (15)

a Tukey

3 (Irl > @Tukey)

By solving with IRLS in the same way as in the previous
section, the weight is given as

_ .y .
w; = {(1 “’"zrukey) (|Vt| < aTukey) (16)

0 (lri| > a’Tukey)

Because of weight w; becomes 0 when|r;| < arukey, Tukey
regression is completely unaffected by significant outliers.

The loss function and wight function of Huber and Tukey
regression is shown in Fig. 6 and Fig. 7 respectively. [,
means ordinary least square method. In Huber regression,
the weight becomes smaller for outliers with large residuals,
and in Tukey regression, the weight becomes zero, making
estimation robust against outliers.

3.3 Regression Model In this subsection, regression
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Figure 8: Image diagram of downsampling.

model used in IRLS is given. From Eq.(1), the nominal plant
can be modeled as

u = J6 — DO — Csgn(8) 17)

where y is the position and C is coulomb friction. Regression
model is given by
n=¢'p (18)

where 7 = F(s), ¢* = F(s) [é 0 sgn(@)] and F(s) is low
pass filter for differentiation.
By using ¢, @ is represented as

i+ 1)

® = 19)

(i + M)

The flow of estimation is as follows. First, determine an
appropriate initial value, then calculate the residual and com-
pute the weight matrix, obtain the solution from Eq.(14), and
finally, if it converges, update the parameters. To prevent the
system from becoming unstable, constraints are set on the
range of parameters. The range of constraints is shown in
Table. 1.

3.4 Data Sampling To stabilize the estimation, con-
ditional updating is used. If any element of ® is close to
zero, @ is not updated. In addition, to focus on a larger inter-
val, downsampling is performed shown in Fig. 8. Sampling
period Ty is larger than control period 7.

4. Simulation

In this section, we conduct a simulation to verify the ef-
fectiveness of the proposed method. The simulation is con-
ducted on the model represented by Eq.(1). The tracking
performance is evaluated for the fifth order polynomial tra-
jectory represented in Fig. 9 when applying PTC, and PTC
using RLS as conventional methods, and PTC using Huber
regression or Tukey regression as proposed methods. The
simulation parameters are as shown in Table. 1. The cutoff
frequency of the LPF used for the differentiation calculation
is set to 100 Hz. The forgetting factor of the RLS is set to
0.998, aligning the length of the memory horizon with the
window length of 500 used in the batch least squares method.
The poles of the PID controller are placed at —40z.

Simulations are conducted on the plant which has twice
larger inertia than the nominal plant. To observe the impact
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Figure 9: Reference trajectory for simulation (the fifth order
polynomial trajectory).

Table 1: Parameters and Settings.

Name Symbol  Value

Inertia moment J 2 x 1072 kgm?
Viscous Friction Coefficient D 4% 1072 Nms/rad
Coulomb Friction Coefficient C 0.4Nm
Torque constant K; 1Nm/A

Input period Ty 4x107*s
Output period Ty 4x10™s
Reference period T, 8x10™s
Estimation Period Tis 4x1072s
Sampling Period Tomp 4%1073s
RLS Forgetting Factor(Conv.) P 0.998

Data Window Length(Prop.) M 500

Threshold for Huber Regression  @puber 0.1
Threshold for Tukey Regression  atukey 0.5
Pole of Closed Loop System —40n

of outliers on the estimation, a force disturbance of magni-
tude 0.5 is applied between 1.4 seconds and 1.5 seconds as
unmodeled disturbance. Furthermore, assuming a situation
where the most significant bit (MSB) is flipped, the sign of
the observed value for one sample of 3.5 seconds is reversed.
The position, velocity, and acceleration when MSB flips are
shown in Fig. 10. Fig. 10 shows that the velocity and ac-
celeration increase instantaneously, resulting in a very large
outlier. If the sign of observed value entering the FB con-
troller, the error due to the FB controller becomes too large
and the change is difficult to understand, so the outlier is only
given to the angle information used for estimation.

The simulation results is shown in Fig. 11 and Fig. 12. Fig.
11 shows the result of RMSE. Fig. 12 shows the results of
estimated paramters. Between 1.4 and 1.5 seconds, a force
disturbance is added, and the estimated value of RLS is dis-
turbed by the outlier. However, when using Huber regression
and Tukey regression, it is found that the estimated value is
not much affected. In Huber regression, the RMSE between
0 and 2.5 seconds has increased by 8.1% compared to RLS
PTC, and in Tukey regression, it has increased by 8.8%.

From Fig. 12, it is shown that not only RLS but also Hu-
ber regression is significantly affected by the large outlier. It
is observed that only Tukey regression can estimate without
being affected by the outlier. This difference is due to the fact
that in Tukey regression, the weight is set to zero for outliers
above a certain level, while in Huber regression, the weight
only decreases but does not become zero. In Huber regres-
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Figure 10: The position, velocity, and acceleration when the
sign of observed value reversed. A force disturbance was
added where the background is orange.
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Figure 11: The RMSE in simulation.
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sion, the RMSE between 2.5 and 5 seconds has increased by
11.9% compared to RLS PTC, and in Tukey regression, it has
decreased by 41.0%.

These results demonstrate the superiority of the proposed
method in the presence of outliers.

5. Experiments

Experiments are conducted on a test bench to verify the
effectiveness of the proposed method. To reduce computa-
tional load, the calculation of IRLS in the proposed method
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Figure 12: Estimated parameter of simulation.
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Figure 13: Reference trajectory for experiment (the third or-
der polynomial trajectory).

is performed over a longer period than the control period,
prioritizing the calculation of control input and performing
matrix calculations for parameter estimation in the remain-
ing time. Due to the computational constraints, the window
size used for the calculation of batch least squares in the pro-
posed method is set to 500 and third order trajectory was used
shown in Fig. 13.

In the experiment, we conducted the estimation by setting
the initial value of the inertia to half of the identified value.
In order to make a fair comparison, the inertia of the model
used in PTC was also set to half. Similar to the simulation, a
force disturbance of magnitude 0.5 was applied between 1.4
seconds and 1.5 seconds and the sign of the observed value
for one sample of 3.5 seconds was reversed.

The experimental results is shown in Fig. 14 and Fig. 15.
Looking at the RMSE values shown in Fig. 14, the tracking
performance of PTC deteriorates due to the parameter error
in the model used for PTC. Similar to the simulation, pa-
rameters estimated by RLS was affected by outliers. In the
proposed method, estimated parameters was less affected by
outliers than RLS, and it was confirmed that the RMSE is
also small. Huber and Tukey regression could estimate with-
out being affected by a force disturbance. In Huber regres-
sion, the RMSE between 0 and 2.5 seconds has decreased by
23.6% compared to RLS PTC, and in Tukey regression, it has
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Figure 15: Estimated parameter of experiment.

decreased by 19.0%.

From Fig. 15, when the sign of observed value was re-
versed, the paramter estimation by Huber regression results
in a large error as in the simulation. It is also confirmed
from the experiment that Tukey regression is a more effec-
tive method when outliers are large. In Huber regression,
the RMSE between 2.5 and 5 seconds has increased by 6.8%
compared to RLS PTC, and in Tukey regression, it has de-
creased by 26.8%. In total, RMSE has decreased by 12.7%
in Tukey regression.

6. Conclusion

In this paper, a high-performance control algorithm with
parameter estimation based on Huber and Tukey regression,
which is effective when outliers are included in the measure-

ment values, was proposed. The effectiveness of the proposed
method was verified by experiments, and a 12.7% perfor-
mance improvement is confirmed compared to conventional
methods. In future research, comparative studies with other
robust methods and detailed considerations on the conditions
of PE will need.
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