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Abstract—Machine tools are essential to the manufacturing
industry, and the twin-drive stage, driven by two parallel-
mounted motors, has recently been adopted to achieve higher
precision in the system. However, this system generates a coupling
force between the motors, which poses a significant challenge.
Numerous advanced control strategies have been proposed to
solve this issue, but they often introduce complexity and create
difficulties for integration into the actual machine tools which
only have limited controller architectures. This paper introduces
an innovative method for transforming controllers from center-
of-gravity (COG) to each axis coordination on the twin drive
system. High-performance controllers originally designed for the
COG coordination in the twin-drive system are adapted into
individuaL-axis controllers using our proposed method. The
effectiveness of the proposed method has been experimentally
confirmed, achieving an 87.4% reduction in tracking error
compared to the conventional method.

Index Terms—equivalent controller transformation, mode de-
coupling, twin-drive machine tool stage

I. INTRODUCTION

In recent years, the size of machine tools, illustrated in
Fig. 1, has been increasing. Historically, single motors have
been used to actuate the stages of these tools. However, to
achieve a more accurate system, the concept of parallel twin-
drive mechanisms, which employ two motors in tandem as
shown in Fig. 2, has emerged. Consequently, numerous studies
have been conducted to precisely control this system.

Generally, when operating machine tools, it is crucial to exe-
cute high-speed and high-precision control. Feedforward (FF)
controllers are typically implemented to achieve high-speed
performance, and many methodologies have been developed
[1]–[3]. Conversely, to attain high-precision control, feedback
(FB) controllers are the standard choice [4]–[6]. Consideration
of nonlinear elements such as nonlinear friction and backlash
is also considered to enhance control performance [7], [8].
However, the critical aspect of twin-drive system control lies
in the management of the coupling force between the dual
actuators, and the above research does not consider this point
sufficiently.

Addressing the coupling force that affects control perfor-
mance has been the focus of extensive research [10]–[14]. The
study in [10] introduces self-resonance cancellation (SRC),

Fig. 1. Example of machine tool widely used in manufacturing [9].
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Fig. 2. System schematics of parallel twin-drive stage in machine tool.

enabling the independent design of resonance delegation and
phase margin, though it does not account for dual actuators.
The work in [11] suggests a decoupling control strategy for
multiple actuators, but it concentrates on merging parallel
and rotational modes rather than on identical plants of the
twin-drive machine tool. In [12], a decoupling approach for
parallel link type manipulators with equivalent mass matrices
is presented, while [13] proposes a resonance suppression
control technique utilizing virtual resistance, which could be
informative for the twin-drive machine tool systems. The
research in [14] develops a model-based FF controller for twin-
drive rotary tables, presenting an interference and disturbance
model applicable to FF control with genetic algorithm-based



Fig. 3. Two-inertia system utilized for experimental validation of proposed
method.
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Fig. 4. Block diagram of two-inertia system.

parameter identification. While this solution demonstrates
adequate fast-tracking performance, the methods tend to be
too complex for practical implementation. Regarding this, a
straightforward model-based decoupling control method has
been recently proposed and validated for twin-drive two-
inertia systems [15]. This method, which introduces virtual
viscosity to transform the plant model, achieves both rapid
and precise control performance; however, implementing this
simpler controller in an actual industrial system can be even
challenging due to the limitations of the software architectures
where we can only adjust the PID gain in each axis controller.

Given these considerations, this paper introduces a con-
troller conversion technique for actual machine tools based
on the model-based decoupling approach in [15]. The method
involves analyzing the control inputs from both FF and FB
controllers and introducing equivalent controllers to replicate
these control inputs in the actual system. The analytical part
of this study focuses on a two-inertia system as fundamental
research, and the validation of the proposed method is con-
ducted through simulations and experiments.

The remainder of this paper is structured as follows: Section
II details the problem setting. Section III presents the proposed
method for controller conversion applicable to real-world
industrial systems. Section IV validates the proposed method
in the simulations. Section V describes experimental results to
verify the benefits of the proposed method. Finally, Section VI
concludes the paper and outlines prospective future research.

II. PROBLEM FORMULATION

A. Modeling of two-inertia system

The goal of this research is to improve tracking performance
in the twin-drive machine tool stage as shown in Fig. 2. As
a fundamental study, this paper aims to control the center of
mass position in the two-inertia system as shown in Fig. 3. The
block diagram of the two-inertia system is shown in Fig. 4.
iR and iL are the motor currents for the R-axis and L-axis,
respectively. JR, DR, JL, DL, K, Kt are the inertia and
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Fig. 5. Bode diagram of two-inertia system. (a) Right-side to right-side. (b)
Right-side to left-side. (c) Left-side to right-side. (d) Left-side to left-side.
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Fig. 6. Reference trajectory in experiments. (a) Position trajectory. (b)
Velocity trajectory.

viscosity coefficients of the R-axis and L-axis motors, elastic
coefficient, and motor torque coefficient, respectively. θR and
θL are the angles of the R-axis and L-axis motors, respectively.
ωR and ωL are the angular speeds of the R-axis and L-axis
motors, respectively. The frequency response of the two-inertia
system is shown in Fig. 5, and the parameters identified from
the frequency response are listed in Table. I.

B. Mode decoupling to center-of-gravity coordinate with vir-
tual viscosity

In this part, the mode decoupling method of the two-inertia
system is presented based on [15]. The block diagram of the
ideal control system is shown in Fig. 7. The mode decoupling
is achieved by adding the virtual viscosity as shown in Fig. 7.
Thanks to the virtual viscosity, motion equations of two-
inertia system are decoupled from individual axes orientation
to center-of-gravity (COG) orientation, which is detailed later.
In this paper, the parallel mode of COG is called “sum mode”,
and the rotational mode of COG is called “difference mode”.
θsum, θdiff , θsum,ref , θdiff,ref , θ̂sum, θ̂diff are the rotational angle
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Fig. 7. Block diagram of ideal implementation.

on the sum axis and diff axis, feedback reference of rotational
angle to the sum mode controller and diff mode controller, and
measured value of rotational angle on sum axis and diff axis,
respectively. Csum is the position controller for the sum mode,
which is employed as a PID controller in this paper. Cdiff is the
position controller for the difference mode, which is employed
as a P controller. isum,FF, isum,FB, idiff,FB are the FF input
for the sum mode controller, FB reference for the sum mode
controller, and controller output of the sum mode controller,
respectively. The FF input is generated within the framework
of multirate FF control [1]. i′t,R, i′t,L, i′v,R, i′v,L, it,R, it,L are
the control inputs without virtual viscosity on the R-axis and
L-axis, control inputs calculated as the virtual viscosity on the
R-axis and L-axis, control inputs for the plants on the R-axis
and L-axis, respectively. Msd,RL, MRL,sd are the transform
matrices from the COG modes to the individual axes and from
the individual axes to the COG modes, respectively.

Considering only the control inputs i′t,R, i′t,L, without the
virtual viscosity, the equations of motion on the two-inertia
system as shown in Fig. 4 are given as,

JR
d2θR
dt2

+DR
dθR
dt

+K (θR − θL) = Kti
′
t,R, (1a)

JL
d2θL
dt2

+DL
dθL
dt

+K (θL − θR) = Kti
′
t,L. (1b)

We consider adding control inputs as the torques such as
Kti

′
v,R, Kti

′
v,L to the right-hand side of (1), respectively.

Assuming that these control inputs are linear with respect to
the rotational speed of individual axes motor, and considering
the coefficients as aR, aL, we can express Kti

′
v,R = aR

dθR
dt ,

Kti
′
v,L = aL

dθL
dt . Then (1) becomes,

JR
d2θR
dt2

+ (DR − aR)
dθR
dt

+K (θR − θL) = Kti
′
t,R, (2a)

JL
d2θL
dt2

+ (DL − aL)
dθL
dt

+K (θL − θR) = Kti
′
t,L. (2b)

To convert (2) into the COG coordinate system, the below
equations should be established:

DR − aR
JR

=
DL − aL

JL
(= b) . (3)

In this paper, The condition aR = 0 is assumed. Then,

aL = DL − JL
JR

DR. (4)
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Fig. 8. Block diagram of actual implementation.

TABLE I
PARAMETERS OF TWO-INERTIA SYSTEM.

Parameter Value

Right-side Motor Inertia JR 0.30mkgm2

Right-side Motor Viscosity DR 3.0mNms/rad

Left-side Motor Inertia JL 0.24mkgm2

Left-side Motor Viscosity DL 1.71mNms/rad
Torsional Rigidity K 99.0Nm/rad
Motor Torque Coefficient Kt 0.05Nm/A

Under (3) and (4), transforming (2) results in,

JR
d2θR
dt2

+ bJR
dθR
dt

+K (θR − θL) = Kti
′
R, (5a)

JL
d2θL
dt2

+ bJL
dθL
dt

+K (θL − θR) = Kti
′
L. (5b)

Regarding (5), if we sum up both sides of (5a) and (5b) and
divide by JR + JL, or divide both sides of (5a) and (5b) by
JR and JL respectively before subtracting them, the equations
of motion expressed in sum and difference modes are,

d2θsum

dt2
+ b

dθsum

dt
= Ktisum , (6a)

d2θdiff
dt2

+ b
dθdiff
dt

+

(
K

JR
+

K

JL

)
θdiff = Ktidiff . (6b)

Here, isum and idiff are expressed as,[
θsum
θdiff

]
=

[
JR

JR+JL

JL

JR+JL

1 −1

] [
θR
θL

]
= MRL,sd

[
θR
θL

]
,

(7a)[
i′t,R
i′t,L

]
=

[
JR

JRJL

JR+JL

JL − JRJL

JR+JL

] [
isum
idiff

]
= Msd,RL

[
isum
idiff

]
.

(7b)

Hence, the coupling system represented by (1) can be decou-
pled into non-coupling modes as shown in (6) by adding the
virtual viscosity.
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Fig. 9. Simulation results of proposed controller oriented at individual axes. (a) Center of gravity position. Reference value ( ) and measured value ( ).
(b) Center of gravity velocity. Reference value ( ) and measured value ( ). (c) Control input. R-axis ( ) and L-axis ( ). (d) Difference position. (e)
Position error. (f) Enlarged figure of position error. Circle marks for control period and cross marks for sampling period. (g) Velocity error. (h) Enlarged figure
of velocity error. Circle marks for control period and cross marks for sampling period.

TABLE II
SIMULATION RESULTS REGARDING COULOMB FRICTION.

θ ω
RMSE Parameter Condition Ideal [rad] Prop. [rad] Error Rate [%] Ideal [rad/s] Prop. [rad/s] Error Rate [%]

w/o Coulomb dR = 0, dL = 0 1.1334× 10−12 1.1334× 10−12 −5.7585× 10−4 2.7124× 10−6 2.7124× 10−6 −2.5338× 10−7

w/ Coulomb dR = JRd
′, dL = JLd

′ 1.1164× 10−4 1.1164× 10−4 −1.9738× 10−11 4.4389× 10−3 4.4389× 10−3 −2.2528× 10−11

dR = JRd
′, dL = 2JLd

′ 1.6169× 10−4 1.6169× 10−4 1.5842× 10−3 6.2596× 10−3 6.2597× 10−3 1.6799× 10−3

dR = JRd
′, dL = 3JLd

′ 2.1168× 10−4 2.1170× 10−4 5.5889× 10−3 8.0022× 10−3 8.0027× 10−3 6.8812× 10−3

III. EQUIVALENT CONTROLLER TRANSFORM OF
CENTER-OF-GRAVITY ORIENTED CONTROLLERS TO

AXIS-SEPARATED COORDINATION

This section outlines the proposed method for converting
the ideal controller, as illustrated in Fig. 7, into the practical
controller depicted in Fig. 8. In Fig. 8, θR,ref , θL,ref , θ̂R, θ̂L
are the FB reference of rotational angle on the R-axis and L-
axis, measured value of rotational angle on R-axis and L-axis,
respectively. iR,ref , iL,ref , iR,FB, iL,FB are the FF input for
the R and L-axis controller, and FB reference for the R and
L-axis controller, respectively. The ideal FF input isum,FF is
transformed into iR,FF and iL,FF, while the ideal feedback
controllers Csum and Cdiff are converted into CR and CL,
respectively.

The conversion of the FF input is executed based on (7b).
The FF control input for the R-axis is set as iR,FF =
JRisum,FF, and for the L-axis as iL,FF = JLisum,FF, assuming
the FF input on difference axis idiff,FF = 0.

Next, the method for feedback controller conversion is
described. Initially, the feedback controller inputs isum,FB and

idiff,FB are calculated as follows, utilizing (7a):

isum,FB = Csum

(
θsum,ref − θ̂sum

)
,

= Csum · JR
JR + JL

(
θR,ref − θ̂R

)
+ Csum · JL

JR + JL

(
θL,ref − θ̂L

)
, (8a)

idiff,FB = Cdiff

(
θdiff,ref − θ̂diff

)
,

= Cdiff

(
θR,ref − θ̂R

)
− Cdiff

(
θL,ref − θ̂L

)
. (8b)

From (7b) and (8), the feedback control input for the R-axis
iR,FB is computed as:

iR,FB =
J2
R

JR + JL
CsumeθR +

JRJL
JR + JL

CsumeθL

+
JRJL

JR + JL
CdiffeθR − JRJL

JR + JL
CdiffeθL , (9)

where eθR and eθL are the position error on R-axis and L-
axis, respectively. Assuming the condition where eθR = eθL ,
which establishes if dR = JRd

′ and dL = JLd
′ for the

input disturbances dR and dL as d′ is constant value (further



examined in the Appendix), iR,FB simplifies to:

iR,FB = JRCsumeθR (10)

A similar approach is taken for the feedback control input for
the L-axis iL,FB, yielding the equation:

iL,FB = JLCsumeθL (11)

Referring to (10) and (11), the feedback controller conversion
is realized by setting CR = JRCsum and CL = JLCsum.

IV. SIMULATION

To validate the proposed controller transforms, simulations
are conducted on the two-inertia system as depicted in Fig. 4.
In the simulations, the ideal controller as shown in Fig. 7 and
the proposed controller as shown in Fig. 8 are implemented
with the same poles in sum and difference modes. The
simulation parameters are shown in Table. I.

The simulation results are presented in Fig. 9. In this paper,
only the results from the proposed controller implementation
are shown because it achieves perfect tracking performance
as well as the ideal controller’s results. Tracking errors of the
rotational angle at COG are shown in Fig. 9(e), with a detailed
view around 0.5 s provided in Fig. 9(f). The maximum tracking
error is found to be less than the nano-order magnitude
according to Fig. 9(e), achieving perfect tracking at each
sampling period as shown in Fig. 9(f). Similar results are
observed in the velocity performance as shown in Figs. 9(g)
and 9(h). Fig. 9(d) shows the time response of the torsional
angle θdiff , as defined in (7a), maintaining 0 deg. It signifies
synchronized movement across both axes of the system.

The validity of the approximation as dR = JRd
′ and

dL = JLd
′ in the proposed method is analyzed with coulomb

friction, and the results are provided in Table. II. The coulomb
friction is implemented as JRd

′ = 0.1A in this simulation.
The first column shows the results without coulomb friction,
which means dR = 0A, dL = 0A. It indicates that error
of the RMSE value in the rotational angle θ between ideal
and proposed implementation differs only by the order of
10 × 10−18 rad, which can be considered as a calculation
error. When coulomb friction is included in the simulation,
the same outcome occurs if dR = JRd

′ and dL = JLd
′,

validating the approximation of the proposed method. It is
also confirmed that the error between the ideal and proposed
implementations increases if the condition where dR = JRd

′

and dL = JLd
′ is not established. These results show the

validity of the approximation in the proposed method.

V. EXPERIMENTS

This section presents the experimental results to validate
the proposed method. The experiments are conducted for
three approaches: each-axis-oriented controller without virtual
viscosity as the conventional method; COG-oriented controller
with virtual viscosity as the ideal method; and each-axis-
oriented controller with virtual viscosity as the proposed
method. These methods are applied to the two-inertia system
shown in Fig. 3.
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Fig. 10. Experimental results of conventional method ( ), ideal implemen-
tation ( ), and proposed actual implementation ( ). (a) Error of rotational
angle at COG. (b) Enlarged view of (a). (c) Torsional angle.

TABLE III
RMSE VALUES OBTAINED FROM EXPERIMENTAL RESULTS.

Conv. Ideal Prop.

Sum Position θsum [µrad] 590 20.5 74.6
Error Rate [%] 0 −96.5 −87.4

Each feedback controller design is conducted by pole place-
ment using the parameters in Table. I. In the pole identification
phase, it is increased by 50 rad/s from 100 rad/s until the tor-
sional angle θdiff is about to oscillate in the experiments. The
proportional gain for Cdiff is determined in the same way in
the ideal implementation. Finally, the poles are determined as
follows: 150 rad/s for CR and CL in the conventional method;
500 rad/s for Csum and proportional gain Kp,diff = 10000 for
Cdiff in the ideal method; 300 rad/s for Csum converted into
CR and CL in the proposed method.

Fig. 10 presents the experimental results. Fig. 10(a) depicts
the tracking error of the rotational angle at the COG for the
reference trajectory, as illustrated in Fig. 6(a). Although the
controller architectures for both the conventional and proposed
methods are identical other than the virtual viscosity, the
proposed method demonstrates superior control performance.
Fig. 10(b) provides an enlarged view of the tracking error
shown in Fig. 10(a). This shows that the control performance
of the ideal implementation surpasses that of the proposed
method. This result seems to happen because there is the
assumption in the proposed method that the same input dis-
turbances occur on each axis. Table. III lists the RMSE values
in the experiments. The error rate of the proposed method is
improved by 87.4% compared to the conventional method.
These results indicate that the proposed method achieves a
substantial enhancement over the conventional approach even
if the controller architecture is limited.



VI. CONCLUSION

In this paper, we proposed a method that converts the
ideal controllers into actual implementations for real machine
tools. The controller transformation algorithm was derived
from the analysis of the controller output. The effectiveness
of the proposed method was verified through simulations and
experiments using the two-inertia bench system, reducing the
tracking error by 87.4% compared to conventional methods.

In this study, the virtual viscosity was applied only to the L-
axis. Future work will investigate the optimal distribution ratio
of virtual viscosity for each axis. Disturbance analysis was
not sufficiently conducted in this study, so future controller
designs will be based on it to further improve the tracking
performance in actual implementations. The final goal is to
implement the proposed method in actual machine tools with
a twin-drive mechanism, and further studies will be conducted
in this regard.

APPENDIX A
APPROXIMATION ANALYSIS OF ROTATIONAL ANGLE ERROR

The frequency responses from the input disturbances dR
and dL to the outputs θR and θL are analyzed in this section.
The following relations for θR and θL are established:

θR = GR (uR − τs + dR) ,

= GR (−CRθR −K (θR − θL) + dR) , (12a)
θL = GL (uL + τs + dL) ,

= GL (−CLθL +K (θR − θL) + dL) , (12b)

where uR, uL, and τs represent the control input on the
R-axis, control input on the L-axis, and torsional torque,
respectively. Deriving from equation (12), we obtain:

A =

[
1 + (CR +K)GR −KGR

−KGL 1 + (CL +K)GL

]
, (13a)

A

[
θR
θL

]
=

[
GRdR
GLdL

]
. (13b)

Exploiting (13), θR and θL are deduced as follows:

θR =
1

|A|
[{1 + (CL +K)GL} dR +KGRdL] , (14a)

θL =
1

|A|
[KGLdR + {1 + (CR +K)GR} dL] . (14b)

where |A| is the determinant of matrix A. In the parallel
system depicted in Figure 2, the coulomb friction significantly
impacts the tracking performance as the disturbance. Consider-
ing that the coulomb friction and inertia are both proportional
to the mass, the input disturbances in the rotational system are
defined as dR = JRd

′ and dL = JLd
′ as d′ is a constant value.

Considering (5) and (14) and CR = JRCsum, CL = JLCsum,

|A|(θR − θL) = GRdR (1 + CLGL)−GLdL (1 + CRGR) ,

=
JRd

′

JRs2 + bJR

(
1 +

JLCsum

JLs2 + bJL

)
,

− JLd
′

JLs2 + bJL

(
1 +

JRCsum

JRs2 + bJR

)
= 0.

(15)

Hence, the condition eθR = eθL is established when θR,ref =
θL,ref and it is assumed that dR = JRd

′ and dL = JLd
′.
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