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A B S T R A C T

Multirate feedforward control enables perfect tracking control for the desired state trajectory at every sample
as the same number of the model order. The aim of this paper is the comparison of perfect tracking control
approaches for intersample performance in multi-modal motion systems. The multirate feedforward control has
a trade-off between the number of states for perfect tracking control and the reference sampling frequency. To
balance the trade-off, the states for the perfect tracking control can be selected by the mode decomposition.
Intersample performance of each approach in a multi-modal motion system is compared in both frequency
domain and time domain.
1. Introduction

Feedforward control based on exact model inversion enables perfect
tracking control (Tomizuka, 1987) for the model of the controlled
system. The quality of the feedforward controller directly results in
tracking performance in high-precision mechatronic systems such as
wafer scanners (Steinbuch, Oomen, & Vermeulen, 2021), wire bon-
ders (Poot, Portegies, Mooren, van Haren, van Meer, & Oomen, 2022),
and ball-screw-driven stages (Hayashi, Fujimoto, Isaoka, & Terada,
2020). In industrial applications, the system is controlled in discrete
time but the tracking performance should be improved in continuous
time.

The exact model inversion has a challenge when the model has
nonminimum-phase zeros such as intrinsic and discretization zeros
(Åström, Hagander, & Sternby, 1984). Several approximated inverse ap-
proaches include zero-phase-error tracking control (ZPETC) (Tomizuka,
1987), nonminimum-phase zeros ignore (NPZI) (Gross, Tomizuka, &
Messner, 1994), and zero-magnitude-error tracking controller (ZMETC)
method (Wen & Potsaid, 2004), and comparisons are provided in But-
terworth, Pao, and Abramovitch (2012), van Zundert and Oomen
(2018). These approaches cannot provide exact on-sample tracking
due to approximation. The single-rate stable inversion approach (van
Zundert & Oomen, 2018) generates the noncausal bounded feedforward
input for the model with nonminimum-phase zeros and provides perfect
output tracking for every sample. However, it cannot compensate for
the zeros around −1 of the discrete-time model that cause the oscillating
feedforward input and deteriorate intersample performance when the
relative degree of the continuous-time model is 2 or more (Åström et al.,
1984).

∗ Corresponding author.
E-mail address: mmae@ieee.org (M. Mae).

To improve intersample performance, the multirate feedforward
control (Fujimoto, Hori, & Kawamura, 2001; Ohnishi, Beauduin, & Fu-
jimoto, 2019) is presented. The multirate feedforward control provides
perfect 𝑛 states tracking for every 𝑛 sample and prevents intersample
oscillation. There is a trade-off in the multirate feedforward control
between the number of states for perfect tracking control and the
reference sampling frequency. To balance the trade-off, the multirate
feedforward control approaches based on modal form with additive
decomposition (Mae, Ohnishi, & Fujimoto, 2021; Ohnishi & Fujimoto,
2018) and multiplicative decomposition (van Zundert, Ohnishi, Fu-
jimoto, & Oomen, 2020) are presented. Both approaches select the
states for perfect tracking control and balance the trade-off to improve
intersample performance. Note that the concept of perfect tracking
control is defined in the sampled-data controlled systems as ‘‘the output
perfectly tracks the reference with zero tracking error at every sampling
point’’ (Tomizuka, 1987). The concept of perfect tracking control is in
discrete time, and it is distinguished from the concept of perfect control
in continuous time (Skogestad & Postlethwaite, 2005).

There are other finite sample preview feedforward control ap-
proaches (Duan, Yoon, & Okwudire, 2018; Hirata & Ueno, 2011; Totani
& Nishimura, 1994) based on minimizing the two-norm of the tracking
error with optimization or least square calculation. These approaches
can deal with constraints using the redundancy of the preview samples.
However, these concepts are not the same as the exact model inversion
approaches such as the single-rate stable inversion and the multirate
feedforward control which provide exact on-sample tracking for the
model, and the number of preview samples is normally larger than that
of the exact model inversion approaches.
967-0661/© 2023 Elsevier Ltd. All rights reserved.
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Fig. 1. Block diagram of tracking control. The continuous-time system 𝑮 is controlled
by the discrete-time controller 𝑭 with sampler  and zero-order-hold . The objective
is to minimize the continuous-time error 𝒆(𝑡).

Although several approaches are available to design the perfect
racking controller, the choice of the feedforward controller can be arbi-
rarily and there is no comparison in terms of intersample performance
or perfect tracking controllers. The aim of this paper is the analysis
f pre-existing perfect tracking controllers in both frequency domain
nd time domain and provides the guideline to design the feedforward
ontroller to improve intersample performance. The main contributions
f this paper are as follows.

ontribution 1. Perfect tracking control approaches are described focus-
ng on improving intersample performance in multi-modal motion systems.

ontribution 2. Intersample performance of each approach is evaluated
n both frequency domain and time domain.

The theory is described in a general multi-input multi-output
MIMO) system and the verification is conducted in a single-input
ingle-output (SISO) system.

The outline is as follows. In Section 2, the tracking problem for
ntersample performance is formulated. In Section 3, the desired state
rajectory generation method is presented for SISO and MIMO systems.
n Section 4, the multirate feedforward controller design methods with
dditive and multiplicative decomposition are presented. In Section 5,
he intersample performance is validated in a multi-modal motion
ystem. In Section 6, conclusions are presented.

. Problem formulation

In this section, the problem to improve continuous-time tracking
erformance is formulated. The perfect tracking control methods based
n the single-rate and multirate feedforward are described. From the
rade-off of these two approaches, the requirements of the optimal
erfect tracking controller design are presented.

.1. Intersample performance in sampled-data control

The considered tracking control configuration is shown in Fig. 1,
ith input 𝒖 ∈ R𝑛𝑢 , output 𝒚 ∈ R𝑛𝑦 , reference 𝒓 ∈ R𝑛𝑦 , and error 𝒆 ∈
𝑛𝑦 . In this paper, the system is assumed to be square as 𝑛𝑢 = 𝑛𝑦 = 𝑚.
he 𝑚-input 𝑚-output 𝑛th order continuous-time linear time-invariant
ystem 𝑮𝑐

𝑠
= (𝑨𝑐 ,𝑩𝑐 ,𝑪𝑐 ,𝑶) is given by

̇ (𝑡) = 𝑨𝑐𝒙(𝑡) + 𝑩𝑐𝒖(𝑡), (1)

𝒚(𝑡) = 𝑪𝑐𝒙(𝑡), (2)

here 𝑨𝑐 ∈ R𝑛×𝑛, 𝑩𝑐 ∈ R𝑛×𝑚, and 𝑪𝑐 ∈ R𝑚×𝑛. The discrete-time system
𝑑 of the continuous-time system 𝑯 𝑐 discretized by sampler  and

ero-order-hold  in sampling time 𝛿 is generally defined as

𝑐
𝑠
=
[

𝑨𝑐 𝑩𝑐
𝑪𝑐 𝑫𝑐

]

, (3)

𝑯𝑑
𝑧
= 𝑯 𝑐 =

[

𝑨𝑑 𝑩𝑑
𝑪𝑑 𝑫𝑑

]

=
[

𝑒𝑨𝑐𝛿 𝑨−1
𝑐 (𝑒𝑨𝑐𝛿 − 𝑰)𝑩𝑐

𝑪𝑐 𝑫𝑐

]

, (4)

𝒙[𝑘] = 𝒙(𝑘𝛿). (5)

The discrete-time system 𝑮𝑑
𝑧
= (𝑨𝑑 ,𝑩𝑑 ,𝑪𝑑 ,𝑶) = 𝑮𝑐 is given by

𝒙[𝑘 + 1] = 𝑨 𝒙[𝑘] + 𝑩 𝒖[𝑘], (6)
2

𝑑 𝑑
𝒚[𝑘] = 𝑪𝑑𝒙[𝑘]. (7)

The control objective considered in this paper is to minimize the
continuous-time error 𝒆(𝑡) that includes both on-sample and intersam-
ple performance for the continuous-time reference 𝒓(𝑡) that is assumed
to be known in advance.

2.2. Single-rate feedforward control based on discrete-time model inversion

The one-sample forward shifted system 𝑮̃𝑑 of 𝑮𝑑 from 𝒖[𝑘] to 𝒚[𝑘+1]
s given by

[𝑘 + 1] = 𝑨𝑑𝒙[𝑘] + 𝑩𝑑𝒖[𝑘], (8)

𝒚[𝑘 + 1] = 𝑪𝑑𝑨𝑑𝒙[𝑘] + 𝑪𝑑𝑩𝑑𝒖[𝑘]. (9)

or the system 𝑯 = (𝑨,𝑩,𝑪 ,𝑫) with nonsingular 𝑫, the inverse system
−1 is generally defined as

−1 =
[

𝑨 − 𝑩𝑫−1𝑪 𝑩𝑫−1

−𝑫−1𝑪 𝑫−1

]

. (10)

By inverting 𝑮̃𝑑 , the input 𝒖 generated by the single-rate feedforward
ontroller is given by

[𝑘] = 𝑮̃−1
𝑑 𝒓[𝑘 + 1], (11)

where the single-rate feedforward controller 𝑮̃−1
𝑑 is given by

𝑮̃−1
𝑑 =

[

𝑨𝑑 − 𝑩𝑑 (𝑪𝑑𝑩𝑑 )−1𝑪𝑑𝑨𝑑 𝑩𝑑 (𝑪𝑑𝑩𝑑 )−1

−(𝑪𝑑𝑩𝑑 )−1𝑪𝑑𝑨𝑑 (𝑪𝑑𝑩𝑑 )−1

]

. (12)

When 𝑮̃−1
𝑑 has unstable poles, it can be decomposed as

[

𝒙𝑠[𝑘 + 1]
𝒙𝑢[𝑘 + 1]

]

=
[

𝑨𝑠 𝑶
𝑶 𝑨𝑢

] [

𝒙𝑠[𝑘]
𝒙𝑢[𝑘]

]

+
[

𝑩𝑠
𝑩𝑢

]

𝒓[𝑘 + 1], (13)

𝒖[𝑘] =
[

𝑪𝑠 𝑪𝑢
]

[

𝒙𝑠[𝑘]
𝒙𝑢[𝑘]

]

+𝑫𝒓[𝑘 + 1], (14)

where |𝜆(𝑨𝑠)| ≤ 1 and |𝜆(𝑨𝑢)| > 1. The bounded feedforward input 𝑢 is
iven by

[𝑘] = 𝑪𝑠𝒙𝑠[𝑘] + 𝑪𝑢𝒙𝑢[𝑘] +𝑫𝒓[𝑘 + 1] (15)

here 𝒙𝑠 follows from solving

𝑠[𝑘 + 1] = 𝑨𝑠𝒙𝑠[𝑘] + 𝑩𝑠𝒓[𝑘 + 1], 𝒙𝑠[−∞] = 𝟎 (16)

orward in time and 𝒙𝑢 follows from solving

𝑢[𝑘 + 1] = 𝑨𝑢𝒙𝑢[𝑘] + 𝑩𝑢𝒓[𝑘 + 1], 𝒙𝑢[∞] = 𝟎 (17)

ackward in time (van Zundert & Oomen, 2018). This stable inversion
pproach is based on that the unstable poles |𝜆(𝑨𝑢)| > 1 forward in
ime are stable poles |𝜆(𝑨𝑢)−1| < 1 backward in time. The generated
eedforward input 𝑢 provides perfect output tracking for every sample.

Note that although the feedforward input generated by the single-
ate stable inversion approach is bounded, the oscillating poles around
= −1 cannot be compensated. The oscillating feedforward input

an deteriorate intersample performance. The single-rate feedforward
ontroller has unstable or oscillating poles when the relative degree of
he continuous-time model is 2 or more as Euler–Frobenius polynomi-
ls (Åström et al., 1984).

.3. Multirate feedforward control for full-state tracking

To compensate for oscillating poles of the feedforward controller
ue to discretization, multirate feedforward control (Fujimoto et al.,
001) based on perfect state tracking is presented.

The 𝑛 samples lifted system 𝑯𝑑 of 𝑯𝑑
𝑧
= (𝑨𝑑 ,𝑩𝑑 ,𝑪𝑑 ,𝑫𝑑 ) is gener-

ally defined as
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[

𝑯𝑑
𝑧𝑛
= 𝑛𝑯𝑑−1

𝑛 =
[

𝑨𝑑 𝑩𝑑
𝑪𝑑 𝑫𝑑

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑨𝑛
𝑑 𝑨𝑛−1

𝑑 𝑩𝑑 𝑨𝑛−2
𝑑 𝑩𝑑 ⋯ 𝑨𝑑𝑩𝑑 𝑩𝑑

𝑪𝑑 𝑫𝑑 𝑶 ⋯ ⋯ 𝑶

𝑪𝑑𝑨𝑑 𝑪𝑑𝑩𝑑 𝑫𝑑
. . .

...
...

...
. . . . . . . . .

...

𝑪𝑑𝑨𝑛−2
𝑑 𝑪𝑑𝑨𝑛−3

𝑑 𝑩𝑑 𝑪𝑑𝑨𝑛−4
𝑑 𝑩𝑑

. . . 𝑫𝑑 𝑶
𝑪𝑑𝑨𝑛−1

𝑑 𝑪𝑑𝑨𝑛−2
𝑑 𝑩𝑑 𝑪𝑑𝑨𝑛−3

𝑑 𝑩𝑑 ⋯ 𝑪𝑑𝑩𝑑 𝑫𝑑

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(18)

𝒖[𝑖𝑛] = 𝑛𝒖[𝑘] =
[

𝒖[𝑛𝑖𝑛] ⋯ 𝒖[𝑛𝑖𝑛 + (𝑛 − 1)]
]𝖳

=
[

𝑢1[𝑛𝑖𝑛] ⋯ 𝑢𝑚[𝑛𝑖𝑛] ⋯ 𝑢𝑚[𝑛𝑖𝑛 + (𝑛 − 1)]
]𝖳 ∈ R(𝑚×𝑛), (19)

𝒚[𝑖𝑛] = 𝑛𝒚[𝑘] =
[

𝒚[𝑛𝑖𝑛] ⋯ 𝒚[𝑛𝑖𝑛 + (𝑛 − 1)]
]𝖳

=
[

𝑦1[𝑛𝑖𝑛] ⋯ 𝑦𝑚[𝑛𝑖𝑛] ⋯ 𝑦𝑚[𝑛𝑖𝑛 + (𝑛 − 1)]
]𝖳 ∈ R(𝑚×𝑛), (20)

where 𝒖[𝑖𝑛] and 𝒚[𝑖𝑛] are column vectors, and 𝑛 is 𝑛 samples lifting
operator (Chen & Francis, 1995).

The 𝑁 (≤ 𝑛) samples lifted system of 𝑮𝑑 is given by

𝑑
𝑧𝑁
= 𝑁𝑮𝑑−1

𝑁 =
[

𝑨𝑑 𝑩𝑑
𝑪𝑑 𝑫𝑑

]

. (21)

ote that the number of lifting samples is 𝑁 = 𝑛 in SISO systems but
t is not the case in MIMO systems, see Mae, Ohnishi, and Fujimoto
2020). The desired state trajectory of 𝑮𝑑 is given by the multirate

sampler for every 𝑁 sample 𝑁 that is defined as

𝒙̂[𝑖𝑁 ] = 𝑁 𝒙̂(𝑡) = 𝒙̂(𝑖𝑁𝑁𝛿), (22)

where 𝒙̂(𝑡) is the desired state trajectory in continuous time. By invert-
ing the state equation of 𝑮𝑑 , the input 𝑢 generated by the multirate
feedforward controller is given by

𝒖[𝑘] = −1
𝑁

(

𝑩−1
𝑑 𝒙̂[𝑖𝑁 + 1] − 𝑩−1

𝑑 𝑨𝑑 𝒙̂[𝑖𝑁 ]
)

= −1
𝑁 𝑩−1

𝑑 (𝑰 − 𝑧−𝑁𝑨𝑑 )𝒙̂[𝑖𝑁 + 1], (23)

here 𝑧 is shift operator in sampling time 𝛿. The generated feedforward
nput 𝒖 provides perfect state tracking for every 𝑁 sample and improves
ntersample performance.

Note that the desired state trajectory 𝒙̂ is given by the reference
nd its derivatives in continuous time for the model without zeros in
ontrollable canonical form. When the model has zeros, the desired
tate trajectory generation method that is described in the next section
s used. Although the multirate feedforward controller provides perfect
tate tracking for every 𝑁 sample, the sampling time of the desired state
rajectory is 𝑁𝛿, and the higher 𝑁 is, the lower the reference sampling
requency 1∕𝑁𝛿 is.

.4. Problem description

From these discussions, the optimal perfect tracking controller
hould be designed by considering the following requirements.

equirement 1. Oscillating poles of the feedforward controller due to
iscretization is compensated by state tracking.

equirement 2. States for perfect tracking control are selected to make
eference sampling frequency enough high.

The state tracking can be provided by multirate feedforward control
nd the states can be selected based on the mode decomposition. In this
aper, two kinds of multirate feedforward controllers with mode selec-
ion in additive decomposition (Mae et al., 2021; Ohnishi & Fujimoto,
018) and multiplicative decomposition (van Zundert et al., 2020) are
escribed and intersample performance is compared with pre-existing
3

erfect tracking control approaches.
In this paper, square systems that have the same number of in-
uts and outputs are assumed. For applications in industrial mecha-
ronic systems, it is usual to design a static decoupling controller
y coordinate transformation and make the controlled system square
nd statically decoupled in the rigid-body mode. The over-actuated
on-square systems are not assumed in this paper because the exact
nd causal inversion can be achieved by the dynamic squaring-down
pproach (van Zundert, Luijten, & Oomen, 2019).

Note that the controller design is addressed in both continuous
nd discrete time to deal with the sampled-data system. Basically, the
esired state trajectory generation is conducted in continuous time and
he multirate feedforward controller design is conducted in discrete
ime.

. Desired state trajectory generation

In this section, the desired state trajectory methods are presented
or the SISO and MIMO systems. For the SISO system, the desired
tate trajectory is generated in controllable canonical form. For the
IMO system, the desired state trajectory is generated by the state

ransformation using the singular value decomposition of the input
atrix. The bounded desired state trajectory is generated by the stable

nd unstable decomposition and the non-causal convolution with time
xis reversal. This paper substantially extends the preliminary result
n Mae, Ohnishi, and Fujimoto (2019), Ohnishi et al. (2019) with
eneralization and theoretical proof in MIMO systems.

.1. Desired state trajectory generation for SISO system

The single-input single-output continuous-time linear time-invariant
th order system is given by

𝑐 (𝑠) =
𝐵(𝑠)
𝐴(𝑠)

=
𝑏𝑚𝑠𝑚 +⋯ + 𝑏1𝑠 + 𝑏0

𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 +⋯ + 𝑎1𝑠 + 𝑎0
, (24)

here 𝑛 > 𝑚 and 𝑏0 ≠ 0. 𝐺𝑐 in controllable canonical form 𝐺𝑐,𝑐𝑐𝑓
𝑠
=

𝑨𝑐,𝑐𝑐𝑓 , 𝒃𝑐,𝑐𝑐𝑓 , 𝒄𝑐,𝑐𝑐𝑓 , 0) is given by

̇ 𝑐𝑐𝑓 (𝑡) = 𝑨𝑐,𝑐𝑐𝑓𝒙𝑐𝑐𝑓 (𝑡) + 𝒃𝑐,𝑐𝑐𝑓 𝑢(𝑡), (25)

𝑦(𝑡) = 𝒄𝑐,𝑐𝑐𝑓𝒙𝑐𝑐𝑓 (𝑡), (26)

here

𝑨𝑐,𝑐𝑐𝑓 𝒃𝑐,𝑐𝑐𝑓
𝒄𝑐,𝑐𝑐𝑓 0

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0
. . . . . .

...
0 0 1 0

−𝑎0 ⋯ ⋯ −𝑎𝑛−1 1
𝑏0 ⋯ 𝑏𝑚 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (27)

The filter for the state trajectory generation is given by

𝛽(𝑡) = −1 [𝐵(𝑠)−1
]

, (28)

where [⋅] is the unilateral Laplace transform. The desired state trajec-
tory in the controllable canonical form is given by

𝒙̂𝑐𝑐𝑓 (𝑡) = ∫

𝑡

0
𝛽(𝑡 − 𝜏)𝑟𝑛(𝜏)d𝜏, (29)

where

𝒙̂𝑐𝑐𝑓 (𝑡) =
[

𝑥̂𝑐𝑐𝑓 ,0(𝑡) ⋯ 𝑥̂𝑐𝑐𝑓 ,𝑛−1(𝑡)
]𝖳 , (30)

𝑟𝑛(𝑡) =
[

1 ⋯
d𝑛−1

d𝑡𝑛−1

]𝖳

𝑟(𝑡). (31)

When 𝐵(𝑠)−1 has unstable poles, it can be decomposed as

𝐵(𝑠)−1 = 𝐵−1(𝑠) + 𝐵−1(𝑠), (32)
𝑠 𝑢
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where all poles 𝑝𝑠 ∈ C of 𝐵−1
𝑠 (𝑠) are Re(𝑝𝑠) ≤ 0 and all poles 𝑝𝑢 ∈ C

of 𝐵−1
𝑢 (𝑠) are Re(𝑝𝑢) > 0. The filters of stable and unstable parts for the

state trajectory generation are given by

𝛽𝑠(𝑡) = −1 [𝐵−1
𝑠 (𝑠)

]

, (33)

𝛽𝑢(𝑡) = −1 [𝐵−1
𝑢 (−𝑠)

]

. (34)

The stable and unstable parts of the desired state trajectory are given
by

𝒙̂𝑠(𝑡) = ∫

𝑡

−∞
𝛽𝑠(𝑡 − 𝜏)𝑟𝑛(𝜏)d𝜏, (35)

̂ 𝑢(𝑡) = ∫

∞

𝑡
𝛽𝑢(𝑡 − 𝜏)𝑟𝑛(𝜏)d𝜏, (36)

and the bounded desired state trajectory in controllable canonical form
𝒙̂𝑐𝑐𝑓 is given by

𝒙̂𝑐𝑐𝑓 (𝑡) = 𝒙̂𝑠(𝑡) + 𝒙̂𝑢(𝑡). (37)

The state transformation of the system 𝑯 = (𝑨,𝑩,𝑪 ,𝑫) with the
state transformation matrix 𝑻 is generally defined as

 (𝑯 ,𝑻 ) =
[

𝑻𝑨𝑻 −1 𝑻𝑩
𝑪𝑻 −1 𝑫

]

. (38)

The state transformation matrix 𝑻 −1
𝑐𝑐𝑓 from the system in controllable

anonical form 𝐺𝑐𝑐𝑓 to the system 𝐺𝑐
𝑠
= (𝑨𝑐 , 𝒃𝑐 , 𝒄𝑐 , 0) with the states 𝒙

s given by

−1
𝑐𝑐𝑓 =

[

𝑩𝑐 ⋯ 𝑨𝑛−1
𝑐 𝑩𝑐

]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑎1 ⋯ 𝑎𝑛−1 1
... . . . . . .

𝑎𝑛−1 . . .

1 𝑶

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (39)

where

𝐺𝑐,𝑐𝑐𝑓 =  (𝐺𝑐 ,𝑻 𝑐𝑐𝑓 ), (40)

𝒙𝑐𝑐𝑓 (𝑡) = 𝑻 𝑐𝑐𝑓𝒙(𝑡). (41)

3.2. Desired state trajectory generation for MIMO system

The 𝑚-input 𝑚-output 𝑛th order continuous-time linear time-
nvariant system 𝑮𝑐

𝑠
= (𝑨𝑐 ,𝑩𝑐 ,𝑪𝑐 ,𝑶) is given by

̇ (𝑡) = 𝑨𝑐𝒙(𝑡) + 𝑩𝑐𝒖(𝑡), (42)

𝒚(𝑡) = 𝑪𝑐𝒙(𝑡), (43)

where 𝑨𝑐 ∈ R𝑛×𝑛, 𝑩𝑐 ∈ R𝑛×𝑚, and 𝑪𝑐 ∈ R𝑚×𝑛. Singular Value
Decomposition (SVD) of 𝑩𝑐 is given by

𝑩𝑐 = 𝑼𝜮𝑽 𝖧, (44)

where 𝑼 ∈ R𝑛×𝑛 and 𝑽 ∈ R𝑚×𝑚 are unitary matrices so that 𝑼−1 = 𝑼𝖧

and 𝑽 −1 = 𝑽 𝖧. The elements of 𝜮 ∈ R𝑛×𝑚 are given by

𝜮 =
[

𝜟
𝑶

]

, (45)

𝜟 = diag(𝜎𝑖) (𝑖 = 1⋯𝑚 ∈ N), (46)

where 𝜎𝑖 (𝑖 = 1⋯𝑚 ∈ N) are the singular values of 𝑩.
The system 𝑮𝑠𝑣𝑑

𝑠
= (𝑨𝑠𝑣𝑑 ,𝑩𝑠𝑣𝑑 ,𝑪𝑠𝑣𝑑 ,𝑶) =  (𝑮𝑐 ,𝑼𝖧) with the states

𝒙𝑠𝑣𝑑 = 𝑼𝖧𝒙 is given by

⎡

⎢

⎢

⎣

𝑾 𝑢(𝑠) 𝜟𝑽 𝖧

𝑾 𝑙(𝑠) 𝑶(𝑛−𝑚)×𝑚
𝑪𝑠𝑣𝑑 𝑶𝑚×𝑚

⎤

⎥

⎥

⎦

[

𝒙𝑠𝑣𝑑 (𝑠)
𝒖(𝑠)

]

=
⎡

⎢

⎢

⎣

𝑶𝑚×𝑚
𝑶(𝑛−𝑚)×𝑚

𝒚(𝑠)

⎤

⎥

⎥

⎦

, (47)

where 𝒖(𝑠) =  [𝒖(𝑡)], 𝒙(𝑠) =  [𝒙(𝑡)], 𝒚(𝑠) =  [𝒚(𝑡)], 𝑾 𝑢(𝑠) ∈ R𝑚×𝑛,
𝑾 𝑙(𝑠) ∈ R(𝑛−𝑚)×𝑛, and the Rosenbrock system matrix 𝜫𝑠𝑣𝑑 (𝑠) is given by

𝜫𝑠𝑣𝑑 (𝑠) =
[

𝑨𝑠𝑣𝑑 − 𝑠𝑰 𝑩𝑠𝑣𝑑
𝑪𝑠𝑣𝑑 𝑶

]

=
⎡

⎢

⎢

𝑾 𝑢(𝑠) 𝜟𝑽 𝖧

𝑾 𝑙(𝑠) 𝑶(𝑛−𝑚)×𝑚

⎤

⎥

⎥

. (48)
4

⎣ 𝑪𝑠𝑣𝑑 𝑶𝑚×𝑚 ⎦

n

The following theorem shows that 𝑾 𝑙(𝑠) contains the property for the
nvariant zeros of the system.

heorem 1 (Identity of Invariant Zeros). Invariant zeros of 𝑮𝑠𝑣𝑑 are the
values when 𝑾 𝑙(𝑠) is not full row rank.

Proof. The invariant zero is defined as the value when the Rosenbrock
system matrix is not full rank. It is assumed that rank(𝜟𝑽 𝖧) = 𝑚 and
the upper 𝑚 rows of 𝜫𝑠𝑣𝑑 (𝑠) are full row rank. It is assumed that
rank(𝑪𝑐 ) = 𝑚 and rank(𝑼 ) = 𝑛. From Sylvester’s rank inequality, for
𝑿 ∈ R𝑙×𝑛 and 𝑿 ∈ R𝑛×𝑘 it generally follows

rank(𝑿) + rank(𝒀 ) − 𝑛 ≤ rank(𝑿𝒀 ). (49)

Sylvester’s rank inequality is applied to 𝑿 as 𝑪𝑐 and 𝒀 as 𝑼 . It follows
that rank(𝑪𝑠𝑣𝑑 ) = rank(𝑪𝑐𝑼 ) = 𝑚 and the lower 𝑚 rows of 𝜫𝑠𝑣𝑑 (𝑠) are
full row rank. Therefore, the values when 𝑾 𝑙(𝑠) is not full rank are
the same as the values when the Rosenbrock system matrix is not full
rank. □

From (47),
[

𝑾 𝑙(𝑠)
𝑪𝑠𝑣𝑑

]

𝒙𝑠𝑣𝑑 (𝑠) =
[

𝑶(𝑛−𝑚)×𝑚
𝒚(𝑠)

]

, (50)

and it follows that

𝒙𝑠𝑣𝑑 (𝑠) =
[

𝑾 𝑙(𝑠)
𝑪𝑠𝑣𝑑

]−1 [ 𝑶(𝑛−𝑚)×𝑚
𝒚(𝑠)

]

. (51)

et the state transformation be

(𝑠) = 𝑼𝒙𝑠𝑣𝑑 (𝑠) = 𝑼
[

𝑾 𝑙(𝑠)
𝑪𝑠𝑣𝑑

]−1 [ 𝑶(𝑛−𝑚)×𝑚
𝒚(𝑠)

]

. (52)

Let the inverse Laplace transform be 𝜷(𝑡) = −1[𝑩−1(𝑠)], where

𝑩−1(𝑠) = 𝑼
[

𝑾 𝑙(𝑠)
𝑪𝑠𝑣𝑑

]−1

. (53)

he desired state trajectory is given by

̂ (𝑡) = ∫

𝑡

0
𝜷(𝑡 − 𝜏)

[

𝑶(𝑛−𝑚)×𝑚
𝒓(𝜏)

]

d𝜏. (54)

When 𝑩(𝑠)−1 has unstable poles, it can be decomposed as

(𝑠)−1 = 𝑩−1
𝑠 (𝑠) + 𝑩−1

𝑢 (𝑠), (55)

here all poles 𝑝𝑠 ∈ C of 𝑩−1
𝑠 (𝑠) are Re(𝑝𝑠) ≤ 0 and all poles 𝑝𝑢 ∈ C of

−1
𝑢 (𝑠) are Re(𝑝𝑢) > 0. The filter matrices of stable and unstable parts

or the state trajectory generation are given by

𝜷𝑠(𝑡) = −1 [𝑩−1
𝑠 (𝑠)

]

, (56)

𝑢(𝑡) = −1 [𝑩−1
𝑢 (−𝑠)

]

. (57)

he stable and unstable parts of the desired state trajectory are given
y

𝒙̂𝑠(𝑡) = ∫

𝑡

−∞
𝜷𝑠(𝑡 − 𝜏)

[

𝑶(𝑛−𝑚)×𝑚
𝒓(𝜏)

]

d𝜏, (58)

̂ 𝑢(𝑡) = ∫

∞

𝑡
𝜷𝑢(𝑡 − 𝜏)

[

𝑶(𝑛−𝑚)×𝑚
𝒓(𝜏)

]

d𝜏, (59)

nd the bounded desired state trajectory 𝒙̂ is given by

̂ (𝑡) = 𝒙̂𝑠(𝑡) + 𝒙̂𝑢(𝑡). (60)

ote that the unitary matrix 𝑼 that is used as the state transformation
atrix is not unique in singular value decomposition but the desired

tate trajectory is generated uniquely for the desired state-space repre-
entation. The calculation of the singular value decomposition can be
umerically ill-conditioned and the state-space representation should
e properly formulated so that the state transformation matrix 𝑼 is not
umerically ill-conditioned.
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4. Multirate feedforward control with mode decomposition

In this section, the multirate feedforward control with mode de-
composition is presented. First, the model of the multi-modal motion
system is defined. Second, the multirate feedforward control with
additive decomposition is described. Third, the multirate feedforward
control with multiplicative decomposition is described. The intersample
performance of these two approaches is verified in the next section.

4.1. Definition of multi-modal motion system

The 𝑚-input 𝑚-output continuous-time multi-modal motion sys-
em (Gawronski, 2004) is defined as

𝑐 (𝑠) =
𝑛𝑚
∑

𝑘𝑚=1

𝒄𝑘𝑚𝒃𝑘𝑚
𝑠2 + 2𝜁𝑘𝑚𝜔𝑘𝑚𝑠 + 𝜔2

𝑘𝑚

=
𝑛𝑚
∑

𝑘𝑚=1
𝑮𝑐,𝑚𝑜𝑑,𝑘𝑚 (𝑠), (61)

where 𝜔 is the resonance angle frequency, 𝜁 is the damping coefficient,
and 𝑛𝑚 is the number of modes. The vectors 𝒃 ∈ R1×𝑚 and 𝒄 ∈ R𝑚×1 are
associated with the inputs, the outputs, and the mode shapes. 𝑮𝑐 in
modal form 𝑮𝑐,𝑚𝑜𝑑

𝑠
= (𝑨𝑐,𝑚𝑜𝑑 ,𝑩𝑐,𝑚𝑜𝑑 ,𝑪𝑐,𝑚𝑜𝑑 ,𝑶) is given by

𝒙̇𝑚𝑜𝑑 (𝑡) = 𝑨𝑐,𝑚𝑜𝑑𝒙𝑚𝑜𝑑 (𝑡) + 𝑩𝑐,𝑚𝑜𝑑𝒖(𝑡), (62)

𝒚(𝑡) = 𝑪𝑐,𝑚𝑜𝑑𝒙𝑚𝑜𝑑 (𝑡), (63)

where

[

𝑨𝑐,𝑚𝑜𝑑 𝑩𝑐,𝑚𝑜𝑑
𝑪𝑐,𝑚𝑜𝑑 𝑶

]

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑨𝑐,𝑚𝑜𝑑,1 𝑶 𝑩𝑐,𝑚𝑜𝑑,1
. . .

...
𝑶 𝑨𝑐,𝑚𝑜𝑑,𝑛𝑚 𝑩𝑐,𝑚𝑜𝑑,𝑛𝑚

𝑪𝑐,𝑚𝑜𝑑,1 ⋯ 𝑪𝑐,𝑚𝑜𝑑,𝑛𝑚 𝑶

⎤

⎥

⎥

⎥

⎥

⎦

, (64)

𝒙𝑚𝑜𝑑 (𝑡) =
[

𝒙𝑚𝑜𝑑,1(𝑡) ⋯ 𝒙𝑚𝑜𝑑,𝑛𝑚 (𝑡)
]𝖳

, (65)

and the subsystem 𝑮𝑐,𝑚𝑜𝑑,𝑘𝑚
𝑠
= (𝑨𝑐,𝑚𝑜𝑑,𝑘𝑚 ,𝑩𝑐,𝑚𝑜𝑑,𝑘𝑚 ,𝑪𝑐,𝑚𝑜𝑑,𝑘𝑚 ,𝑶) is given

by

[

𝑨𝑐,𝑚𝑜𝑑,𝑘𝑚 𝑩𝑐,𝑚𝑜𝑑,𝑘𝑚
𝑪𝑐,𝑚𝑜𝑑,𝑘𝑚 𝑶

]

=

⎡

⎢

⎢

⎢

⎣

0 1 𝑶
−𝜔2

𝑘𝑚
−2𝜁𝑘𝑚𝜔𝑘𝑚 𝒃𝑘𝑚

𝒄𝑘𝑚 𝑶 𝑶

⎤

⎥

⎥

⎥

⎦

. (66)

𝑚𝑜𝑑,𝑘𝑚 (𝑡) =
[

𝑥𝑚𝑜𝑑,𝑘𝑚 ,0(𝑡) 𝑥𝑚𝑜𝑑,𝑘𝑚 ,1(𝑡)
]𝖳

. (67)

Although there are other representations such as the numerical
decomposed model, the multi-modal model is reasonable for the inter-
sample performance improvement by the state tracking control, and
mode selection should be relied on the physical meaning of the states.
The state tracking is only guaranteed on-sample and the intersample
performance improvement is achieved because of the physical relation-
ships between each state. The gray box modeling approach with white
box structure and black box parameter tuning such as in Voorhoeve,
de Rozario, Aangenent, and Oomen (2021) is preferable to obtain the
high-order multi-modal model in which each mode has a physical
interpretation of the mode shapes.

4.2. Multirate feedforward control with additive decomposition

The overview of multirate feedforward control with additive de-
composition (Mae et al., 2021; Ohnishi & Fujimoto, 2018) is shown
in Fig. 2. The indices 𝜇 of the selected modes are defined as

𝜇 = {𝑘𝑚|𝑘𝑚 ∈ 1,… , 𝑛𝑚}, (68)

nd the order 𝜈 of the selected modes is defined as

𝜈 = 2 × number{𝜇}. (69)

he permutation matrix for the selected modes is defined as

𝜇 =
[

𝑬𝜇
]

, (70)
5

𝑬×
here 𝑬𝜇 and 𝑬× consist of standard basis vectors of selected and
nselected modes, and the standard basis vectors of the mode 𝑘𝑚 is
efined as

𝑘𝑚 =
[

𝑶2×2(𝑘𝑚−1) 𝑰2 𝑶2×2(𝑛𝑚−𝑘𝑚)
]

. (71)

The model reduction matrix extracting upper 𝜈 states is defined as

𝑻 𝜈 =
[

𝑰𝜈 𝑶𝜈×(𝑛−𝜈)
]

. (72)

The system of the selected modes 𝑮𝑐,𝜇 is given by

𝒙̇𝜇(𝑡) = 𝑨𝑐,𝜇𝒙𝜇(𝑡) + 𝑩𝑐,𝜇𝒖(𝑡), (73)

𝒚(𝑡) = 𝑪𝑐,𝜇𝒙𝜇(𝑡), (74)

here

𝜇(𝑡) = 𝑻 𝜈𝑻 𝜇𝒙𝑚𝑜𝑑 (𝑡), (75)

𝑨𝑐,𝜇 = 𝑻 𝜈𝑻 𝜇𝑨𝑐,𝑚𝑜𝑑𝑻 −1
𝜇 𝑻 𝖳

𝜈 , (76)

𝑩𝑐,𝜇 = 𝑻 𝜈𝑻 𝜇𝑩𝑐,𝑚𝑜𝑑 , (77)

𝑪𝑐,𝜇 = 𝑪𝑐,𝑚𝑜𝑑𝑻 −1
𝜇 𝑻 𝖳

𝜈 . (78)

he discrete-time system of 𝑮𝑐,𝜇 is given by

𝑑,𝜇
𝑧
= 𝑮𝑐,𝜇 =

[

𝑨𝑑,𝜇 𝑩𝑑,𝜇
𝑪𝑑,𝜇 𝑶

]

, (79)

and the 𝑁 (≤ 𝜈) samples lifted system of 𝑮𝑑,𝜇 is given by

𝑮𝑑,𝜇
𝑧𝑁
= 𝑁𝑮𝑑,𝜇−1

𝑁 =

[

𝑨𝑑,𝜇 𝑩𝑑,𝜇
𝑪𝑑,𝜇 𝑫𝑑,𝜇

]

. (80)

Note that the number of lifting samples is 𝑁 = 𝜈 in SISO systems but
it is not the case in MIMO systems, see Mae et al. (2020). By inverting
the state equation of 𝑮𝑑,𝜇 , the input 𝒖 generated by the multirate
feedforward controller with additive decomposition is given by

𝒖[𝑘] = −1
𝑁

(

𝑩−1
𝑑,𝜇𝒙̂𝜇[𝑖𝑁 + 1] − 𝑩−1

𝑑,𝜇𝑨𝑑,𝜇𝒙̂𝜇[𝑖𝑁 ]
)

= −1
𝑁 𝑩−1

𝑑,𝜇(𝑰 − 𝑧−𝑁𝑨𝑑,𝜇)𝒙̂𝜇[𝑖𝑁 + 1], (81)

where 𝒙̂𝜇[𝑖𝑁 ] = 𝑁𝑻 𝜈𝑻 𝜇𝒙̂𝑚𝑜𝑑 (𝑡). The generated feedforward input
provides perfect state tracking for every 𝑁 sample for the states

orresponding to the selected modes 𝜇.
Note that although perfect state tracking for selected states does

ot guarantee perfect output tracking, it can provide better intersam-
le performance because the desired state trajectory is generated by
he model with full states, and the reference sampling frequency for
elected 𝜈 states becomes higher to 1∕𝑁𝛿 where 𝑁 ≤ 𝜈 ≤ 𝑛.

.3. Multirate feedforward control with multiplicative decomposition

The overview of multirate feedforward control with multiplicative
ecomposition (van Zundert et al., 2020) is shown in Fig. 3. The one-
ample forward shifted system 𝑮̃𝑑,𝑚𝑜𝑑

𝑧
= (𝑨̃𝑑,𝑚𝑜𝑑 , 𝑩̃𝑑,𝑚𝑜𝑑 , 𝑪̃𝑑,𝑚𝑜𝑑 , 𝑫̃𝑑,𝑚𝑜𝑑 )

f the discrete-time system in modal form 𝑮𝑑,𝑚𝑜𝑑
𝑧
= (𝑨𝑑,𝑚𝑜𝑑 ,𝑩𝑑,𝑚𝑜𝑑 ,

𝑑,𝑚𝑜𝑑 ,𝑶) = 𝑮𝑐,𝑚𝑜𝑑 from 𝒖[𝑘] to 𝒚[𝑘 + 1] is given by

𝑨̃𝑑,𝑚𝑜𝑑 𝑩̃𝑑,𝑚𝑜𝑑
𝑪̃𝑑,𝑚𝑜𝑑 𝑫̃𝑑,𝑚𝑜𝑑

]

=
[

𝑨𝑑,𝑚𝑜𝑑 𝑩𝑑,𝑚𝑜𝑑
𝑪𝑑,𝑚𝑜𝑑𝑨𝑑,𝑚𝑜𝑑 𝑪𝑑,𝑚𝑜𝑑𝑩𝑑,𝑚𝑜𝑑

]

. (82)

When 𝜈 states corresponding to the modes 𝜇 are selected,

𝜫 = 𝑺
[

𝑰𝜈 𝑶𝜈×(𝑛−𝜈)
𝑶(𝑛−𝜈)×𝜈 𝑶(𝑛−𝜈)

]

𝑺−1 (83)

is defined with full rank 𝑺 =
[

𝑽 𝑽 ×
]

, where 𝑽 ∈ R𝑛×𝜈 and 𝑽 × ∈
R𝑛×(𝑛−𝜈) are a column space of an invariant subspace of 𝑨 = 𝑨̃𝑑,𝑚𝑜𝑑 and
𝑨× = 𝑨̃𝑑,𝑚𝑜𝑑 − 𝑩̃𝑑,𝑚𝑜𝑑𝑫̃

−1
𝑑,𝑚𝑜𝑑 𝑪̃𝑑,𝑚𝑜𝑑 that correspond to the poles of 𝑮𝑚𝑟

and the zeros of 𝑮𝑠𝑟. Then the state-space realizations are given by

𝑮𝑚𝑟𝑓
𝑧
=

[

𝑨̃𝑑,𝑚𝑜𝑑 𝜫𝑩̃𝑑,𝑚𝑜𝑑𝑫̃
−1
𝑑,𝑚𝑜𝑑

̃

]

, (84)

𝑪𝑑,𝑚𝑜𝑑 𝑰
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Fig. 2. Block diagram of multirate feedforward control with additive decomposition.
Fig. 3. Block diagram of multirate feedforward control with multiplicative decomposition.
w

𝑮

b

𝑮

F

𝑮𝑠𝑟𝑓
𝑧
=
[

𝑨̃𝑑,𝑚𝑜𝑑 𝑩̃𝑑,𝑚𝑜𝑑
𝑪̃𝑑,𝑚𝑜𝑑 (𝑰 −𝜫) 𝑫̃𝑑,𝑚𝑜𝑑

]

. (85)

Let the permutation matrix 𝑻 𝜇 be such that

 (𝑮𝑚𝑟𝑓 ,𝑻 𝜇)
𝑧
=
⎡

⎢

⎢

⎣

𝑨𝑚𝑟 𝑶 𝑩𝑚𝑟
𝑶 𝑨𝑠𝑟 𝑶
𝑪𝑚𝑟 𝑪𝑚𝑟𝑟 𝑰

⎤

⎥

⎥

⎦

, (86)

(𝑮𝑠𝑟𝑓 ,𝑻 𝜇)
𝑧
=
⎡

⎢

⎢

⎣

𝑨𝑚𝑟 𝑶 𝑩𝑠𝑟𝑟
𝑶 𝑨𝑠𝑟 𝑩𝑠𝑟
𝑶 𝑪𝑠𝑟 𝑫𝑠𝑟

⎤

⎥

⎥

⎦

. (87)

𝑚𝑟 with states 𝒙𝑚𝑟 and 𝑮𝑠𝑟 with states 𝒙𝑠𝑟 are given by

𝑚𝑟
𝑧
=
[

𝑨𝑚𝑟 𝑩𝑚𝑟
𝑪𝑚𝑟 𝑰

]

, (88)

𝑮𝑠𝑟
𝑧
=
[

𝑨𝑠𝑟 𝑩𝑠𝑟
𝑪𝑠𝑟 𝑫

]

. (89)

The product of the system 𝑯1 = (𝑨1,𝑩1,𝑪1,𝑫1) and 𝑯2 = (𝑨2,𝑩2,𝑪2,
𝑫2) is generally defined as

𝑯1𝑯2 =
⎡

⎢

⎢

⎣

𝑨1 𝑩1𝑪2 𝑩1𝑫2
𝑶 𝑨2 𝑩2
𝑪1 𝑫1𝑪2 𝑫1𝑫2

⎤

⎥

⎥

⎦

. (90)

he state transformation matrix 𝑻 𝑚𝑠 is given by

𝑚𝑠 =
[

𝑰𝜈 𝑿
𝑶𝜈×(𝑛−𝜈) 𝑰 (𝑛−𝜈)

]−1

, (91)

here 𝑿 ∈ R𝜈×(𝑛−𝜈) is the solution of the Sylvester equation

𝑚𝑟𝑿 −𝑿𝑨𝑠𝑟 = 𝑩𝑚𝑟𝑪𝑠𝑟. (92)

̃ 𝑚𝑠
𝑧
= (𝑨̃𝑚𝑠, 𝑩̃𝑚𝑠, 𝑪̃𝑚𝑠, 𝑑) =  (𝑮̃𝑑,𝑚𝑜𝑑 ,𝑻 𝑚𝑠𝑻 𝜇) = 𝑮𝑚𝑟𝑮𝑠𝑟 is given by

𝑨̃𝑚𝑠 𝑩̃𝑚𝑠
𝑪̃𝑚𝑠 𝑫

]

=
⎡

⎢

⎢

⎣

𝑨𝑚𝑟 𝑩𝑚𝑟𝑪𝑠𝑟 𝑩𝑚𝑟𝑑
𝑶 𝑨𝑠𝑟 𝑩𝑠𝑟
𝑪𝑚𝑟 𝑪𝑠𝑟 𝑫

⎤

⎥

⎥

⎦

. (93)

he 𝑁 (≤ 𝜈) samples lifted system of 𝑮𝑚𝑟 is given by

𝑚𝑟
𝑧𝑁
= 𝑁𝑮𝑚𝑟−1

𝑁 =
[

𝑨𝑚𝑟 𝑩𝑚𝑟
𝑪𝑚𝑟 𝑶

]

. (94)

Note that the number of lifting samples is 𝑁 = 𝜈 in SISO systems but
it is not the case in MIMO systems, see Mae et al. (2020). By inverting
the state equation of 𝑮𝑚𝑟, the reference for the single-rate inversion 𝒓𝑠𝑟
is given by

𝒓𝑠𝑟[𝑘] = −1
𝑁

(

𝑩−1
𝑑,𝑚𝑟𝒙̂𝑚𝑟[𝑖𝑁 + 1] − 𝑩−1

𝑑,𝑚𝑟𝑨𝑑,𝑚𝑟𝒙̂𝑚𝑟[𝑖𝑁 ]
)

= −1
𝑁 𝑩−1

𝑑,𝑚𝑟(𝑰 − 𝑧−𝑁𝑨𝑑,𝑚𝑟)𝒙̂𝑚𝑟[𝑖𝑁 + 1], (95)

here 𝒙̂𝑚𝑟[𝑖𝑁 ] = 𝑁𝑻 𝜈𝑻 𝑚𝑠𝑻 𝜇𝒙̂𝑚𝑜𝑑 (𝑡). Then, the input 𝑢 generated by
he multirate feedforward controller with multiplicative decomposition
s given by

[𝑘] = 𝑮−1𝒓 [𝑘], (96)
6

𝑠𝑟 𝑠𝑟 g
here

−1
𝑠𝑟 =

[

𝑨𝑠𝑟 − 𝑩𝑠𝑟𝑫−1
𝑠𝑟 𝑪𝑠𝑟 𝑩𝑠𝑟𝑫−1

𝑠𝑟
−𝑫−1

𝑠𝑟 𝑪𝑠𝑟 𝑫−1
𝑠𝑟

]

. (97)

Note that the one-sample backward shifted system of 𝐺̃𝑚𝑠 is given
y

𝑚𝑠 =  (𝑮𝑑,𝑚𝑜𝑑 ,𝑻 𝑚𝑠𝑻 𝜇) =
[

𝑨𝑚𝑠 𝑩𝑚𝑠
𝑪𝑚𝑠 𝑶

]

=

[

𝑨̃𝑚𝑠 𝑩̃𝑚𝑠

𝑪̃𝑚𝑠𝑨̃
−1
𝑚𝑠 𝑶

]

=
⎡

⎢

⎢

⎣

𝑨𝑚𝑟 𝑩𝑚𝑟𝑪𝑠𝑟 𝑩𝑚𝑟𝑫
𝑶 𝑨𝑠𝑟 𝑩𝑠𝑟
𝑪∗

𝑚𝑟 𝑫∗
𝑚𝑟𝑪

∗
𝑠𝑟 𝑫∗

𝑚𝑟𝑫

⎤

⎥

⎥

⎦

=
[

𝑨𝑚𝑟 𝑩𝑚𝑟
𝑪∗

𝑚𝑟 𝑫∗
𝑚𝑟

] [

𝑨𝑠𝑟 𝑩𝑠𝑟
𝑪∗

𝑠𝑟 𝑫

]

, (98)

where 𝑫∗
𝑚𝑟𝑫 = 𝑶 and the output is given by

𝒚[𝑘] = 𝑪∗
𝑚𝑟𝒙𝑚𝑟[𝑘] +𝑫∗

𝑚𝑟𝑪
∗
𝑠𝑟𝒙𝑠𝑟[𝑘]. (99)

It shows that the approach provides perfect output tracking for every 𝑁
sample with 𝑫∗

𝑚𝑟 = 𝑶 because the multirate inversion provides perfect
state tracking of 𝒙𝑚𝑟 for every 𝑁 sample. If the system is decomposed
as 𝑫∗

𝑚𝑟 ≠ 𝑶, there is no perfect output tracking because perfect state
tracking of 𝒙𝑠𝑟 is not guaranteed. Therefore, 𝑽 and 𝑽 × should be
selected such that 𝑫∗

𝑚𝑟 = 𝑶.

5. Application to multi-modal motion system

In this section, the intersample performance of the perfect tracking
control approaches is validated in a multi-modal motion system. The
intersample performance is evaluated in both frequency domain and
time domain. The nominal and robust performance is verified in the
simulation using the model without and with modeling error. The
experimental validation is conducted with feedback controller.

5.1. Conditions

The validation is conducted in a single-input single-output multi-
modal motion system in Fig. 4. The frequency response of the controlled
system is shown in Fig. 5. For the verification of the modeling error,
the high-order continuous-time model 𝐺̂ is given by

𝐺̂(𝑠) = 2.44
𝑠2

+ 1.1
𝑠2 + 2 × 0.024 × (2𝜋 × 30)𝑠 + (2𝜋 × 30)2

+ −2.44
𝑠2 + 2 × 0.038 × (2𝜋 × 89)𝑠 + (2𝜋 × 89)2

+ −1.1
𝑠2 + 2 × 0.07 × (2𝜋 × 297)𝑠 + (2𝜋 × 297)2

= 𝐺1(𝑠) + 𝐺2(𝑠) + 𝐺3(𝑠) + 𝐺4(𝑠). (100)

or the controller design, a low-order continuous-time model 𝐺𝑐 is

iven by
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Fig. 4. High-precision positioning stage with input current 𝑢 [A] generating force with
linear motor and output displacement 𝑦 [m] measured by linear encoder with 1 nm
resolution.

Fig. 5. Bode diagram of the controlled system: frequency response data ( ), a high-
order continuous-time model 𝐺̂ ( ), a low-order continuous-time model 𝐺𝑐 ( ), and
a low-order discrete-time model for controller design 𝐺𝑑 ( ). Vertical lines ( ) and
( ) show Nyquist frequency 1∕2𝛿 and sampling frequency 1∕𝛿, respectively.

𝐺𝑐 (𝑠) = 𝐺1(𝑠) + 𝐺2(𝑠)

= 2.44
𝑠2

+ 1.1
𝑠2 + 2 × 0.024 × (2𝜋 × 30)𝑠 + (2𝜋 × 30)2

= 3.54
𝑠2

×
𝑠2 + 2 × 0.02 × (2𝜋 × 25)𝑠 + (2𝜋 × 25)2

𝑠2 + 2 × 0.024 × (2𝜋 × 30)𝑠 + (2𝜋 × 30)2

=
𝑁1(𝑠)
𝐷1(𝑠)

×
𝑁2(𝑠)
𝐷2(𝑠)

. (101)

The controller is designed by the low-order continuous-time model
𝐺𝑐 and the continuous-time performance is verified by the simulation
in the low-order continuous-time model 𝐺𝑐 without modeling error
and the high-order continuous-time model 𝐺̂ with modeling error. The
verification is conducted in both frequency domain and time domain.
The sampling time of the controller is 𝛿 = 10ms. The intersample
performance is evaluated in the sampling time 𝛿∕20 = 0.5ms.

The compared 8 approaches are shown in Table 1. The difference
in the approach between using additive decomposition and using mul-
tiplicative decomposition is the provided perfect tracking to states or
to outputs. If the dynamics of the system are clearly modeled and
the states of the state-space representation have physical meaning, the
approach using additive decomposition is useful because it is clear
to which state the perfect tracking is provided. If the dynamics and
the physical meaning of the system are not clear and the controller
design only focuses on the output, the approach using multiplicative
7

Fig. 6. Performance frequency gain of the continuous-time tracking error in 𝐺𝑐 .
Vertical lines ( ) and ( ) show Nyquist frequency 1∕2𝛿 and sampling frequency
1∕𝛿, respectively. Each line corresponds to 8 approaches from Case 1 to Case 8 in
Table 1, respectively.

Fig. 7. Performance frequency gain of the continuous-time tracking error in 𝐺̂. Vertical
lines ( ) and ( ) show Nyquist frequency 1∕2𝛿 and sampling frequency 1∕𝛿,
respectively. Each line corresponds to 8 approaches from Case 1 to Case 8 in Table 1,
respectively.

decomposition is useful because it provides the perfect tracking to
on-sample output but not to state.

5.2. Frequency domain verification

In frequency domain verification, the intersample performance is
verified by the performance frequency gain |𝐸𝑟| (Fujimoto, 2000;
Lindgarde & Lennartson, 1997; Oomen, van de Wal, & Bosgra, 2007)
in the simulation that is the steady state continuous-time tracking error
normalized by the step sine wave reference and is defined as

|𝐸𝑟(j𝜔)| =
RMS(𝑒j𝜔(𝑡))
RMS(𝑟j𝜔(𝑡))

, (102)

where 𝑟j𝜔(𝑡) can only contain a single frequency at each frequency
and the intersample performance is evaluated in the sampling time
𝛿∕20 = 0.5ms.

The performance frequency gain of the continuous-time tracking
error in 𝐺𝑐 without modeling error is shown in Fig. 6. It shows that
Case 5 = Case 7 and Case 6 = Case 8 in the performance frequency
gain. It is because the discretization only affects the dynamics of zeros,
and the choice of the pole does not affect the performance. Case 4
makes a large error for the whole frequency range because it cannot
compensate for rigid body dynamics. The approaches like Case 1, Case
6, and Case 8 that cannot compensate for oscillating poles of the
feedforward controller due to discretization make large errors around
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Table 1
Comparison of 8 approaches. 𝑇𝑟 is the reference sampling time. 𝐺𝑐,𝑚𝑟 and 𝐺𝑐,𝑠𝑟 are the continuous-time model for the multirate and single-rate
inversion. Intersample performance is evaluated by the Root Mean Square of the tracking error 𝑒RMS = RMS(𝑒(𝑡)) with the sampling time
𝛿∕20 = 0.5ms. The evaluations are conducted by the simulation of 𝐺𝑐 without feedback control, 𝐺̂ without feedback control, and 𝐺̂ with
feedback control, and by the experiment.

Case Line Approach 𝑇𝑟 𝐺𝑐,𝑚𝑟 𝐺𝑐,𝑠𝑟 𝐺𝑐 w/o FB 𝐺̂ w/o FB 𝐺̂ with FB Experiment

1 Single-rate 𝛿 – 𝐺𝑐 9862 nm 16 811 nm 17 642 nm 27 152 nm
2 Multirate 4𝛿 𝐺𝑐 – 5174 nm 11 646 nm 12 406 nm 15 027 nm
3 Additive 2𝛿 𝐺1 – 8199 nm 12 176 nm 13 397 nm 17 210 nm
4 Additive 2𝛿 𝐺2 – >1mm >1mm – –
5 Multiplicative 2𝛿 𝑁1∕𝐷1 𝑁2∕𝐷2 9309 nm 11 280 nm 12 510 nm 22 579 nm
6 Multiplicative 2𝛿 𝑁2∕𝐷1 𝑁1∕𝐷2 8559 nm 14 547 nm – –
7 Multiplicative 2𝛿 𝑁1∕𝐷2 𝑁2∕𝐷1 9309 nm 11 280 nm – –
8 Multiplicative 2𝛿 𝑁2∕𝐷2 𝑁1∕𝐷1 8559 nm 14 547 nm – –
c

c
i

F
f
c
o
C
d

Fig. 8. Continuous-time 4th order polynomial trajectory reference 𝑟(𝑡) and its
derivatives. ( ), (○), and ( ) show sampling points every 𝛿, 2𝛿, and 4𝛿.

Nyquist frequency. In low frequency, |𝐸𝑟| is smaller in order of Case 1
< Case 5 = Case 7 < Case 2 < Case 3. From these analyses, Case 2 with

ultirate feedforward control for full-state tracking provides the best
erformance in steady state, and Case 2, Case 3, Case 5, and Case 7 are
referable approaches.

The performance frequency gain of the continuous-time tracking
rror in 𝐺̂ with modeling error is shown in Fig. 7. There is the same
rend around Nyquist frequency compared to the simulation in 𝐺𝑐

without modeling error. In low frequency, |𝐸𝑟| is around the same
erformance in all approaches except Case 4. It is because the controller
annot compensate for the low-frequency compliance of the unmodeled
igh-frequency dynamics.

.3. Time domain verification

In the time domain verification, the intersample performance is
erified by the continuous-time tracking error in the simulation for the
ontinuous-time reference trajectory shown in Fig. 8. The intersample
erformance is evaluated by Root Mean Square error 𝑒RMS = RMS(𝑒(𝑡))
n Table 1 with the sampling time 𝛿∕20 = 0.5ms.

The time series error 𝑒(𝑡) in 𝐺𝑐 without modeling error is shown
n Fig. 9. The result shows that Case 2 achieves the best performance
8

ecause there is no modeling error between the controller and the i
Fig. 9. Error 𝑒(𝑡) in the simulation of 𝐺𝑐 with sampling time 𝛿∕20 = 0.5ms. ( ), (○),
and ( ) show sampling point every 𝛿, 2𝛿, and 4𝛿. Each figure from top to bottom
orresponds to 8 approaches from Case 1 to Case 8 in Table 1, respectively.

ontrolled system and perfect tracking for all states provides smooth
ntersample behavior.

The time series error 𝑒(𝑡) in 𝐺̂ with modeling error is shown in
ig. 10. The result shows that Case 5 and Case 7 achieve the best per-
ormance because the control input contains relatively low-frequency
omponents compared to Case 2, and it does not excite the resonances
f the unmodeled dynamics. The performance of Case 1, Case 6, and
ase 8 is getting worse in 𝐺̂ because the oscillating feedforward input
ue to discretization excites the unmodeled high-frequency dynam-
cs. From these analyses, multirate feedforward control with mode
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Fig. 10. Error 𝑒(𝑡) in the simulation of 𝐺̂ with sampling time 𝛿∕20 = 0.5ms. ( ), (○),
and ( ) show sampling point every 𝛿, 2𝛿, and 4𝛿. Each figure from top to bottom
corresponds to 8 approaches from Case 1 to Case 8 in Table 1, respectively.

decomposition can provide better intersample performance in tran-
sient response than that of multirate feedforward control for full-state
tracking.

5.4. Experimental validation

From the result of the simulation verification, the experimental
validation is conducted in Case 1, Case 2, Case 3, and Case 5 as
shown in Table 1 with the same reference that is shown in Fig. 8.
The overview of the experimental validation is shown in Fig. 11.
A feedback controller 𝐾 is used for stabilization and compensation
for low-frequency modeling errors in the experimental validation. For
the feedback controller, the PD controller is designed as 5Hz band-

idth and 6 dB modulus margin. In the two-degree-of-freedom control
tructure, the feedforward controller handles tracking performance,
nd the feedback controller handles modeling error and disturbance
ejection, independently. As shown in Fig. 11, the feedback controller
ompensates for the modeling error and disturbance in low frequency.
he simulation with the feedback controller and the quantization of the

inear encoder is also conducted for the validation of the experimental
esults.

The time series error 𝑒(𝑡) in the experiment is shown in Fig. 12. The
̂

9

result has a similar trend to that in the simulation of 𝐺 with feedback
Fig. 11. Block diagram of the experimental validation. 𝐺, 𝐺𝑑 , 𝐾,  and  denote a
controlled system, a low-order discrete-time model for controller design, a feedback
controller, sampler and zero-order-hold, respectively.

Fig. 12. Error 𝑒(𝑡) in the experiment with sampling time 𝛿∕20 = 0.5ms. The solid black
line shows that in the simulation of 𝐺̂ with feedback control. Each figure from top to
bottom corresponds to Case 1, 2, 3, and 5 in Table 1, respectively.

control. Note that due to experimental conditions such as model mis-
matches, the exact on-sample tracking is not provided. The intersample
performance is evaluated by Root Mean Square error 𝑒RMS = RMS(𝑒(𝑡))
in Table 1 with the sampling time 𝛿∕20 = 0.5ms. It shows that Case 2
with multirate feedforward control for full-state tracking provides the
best performance in simulation and experiment with feedback control.
The amplitude spectrum of error 𝑒(𝑡) in the experiment is shown in
Fig. 13. The result shows that Case 1 and Case 5 which contain single-
rate filters have a large error in over sampling frequency because
the frequency components of the feedforward input over sampling
frequency excite the unmodeled high-frequency dynamics.

6. Conclusion

In this paper, perfect tracking control approaches are described
focusing on intersample performance in multi-modal motion systems.
The model of the multi-modal motion system is decomposed into
combinations of the states that can be selected for the perfect tracking
control. The simulation verification and experimental validation in a
multi-modal motion system show that state tracking should be used
to compensate for the oscillating poles of the feedforward controller
due to discretization. In summary, the feedforward controller to im-
prove intersample performance should be designed with the following
conditions.

• State tracking approach with lifted samples at least the same
number as the relative degree can compensate for oscillating
poles of the feedforward controller due to discretization when the
relative degree of the continuous-time model is 2 or more.
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Fig. 13. Amplitude spectrum of error 𝑒(𝑡) in the experiment with sampling time
∕20 = 0.5ms. The solid black line shows that in the simulation of 𝐺̂ with feedback
ontrol. Vertical lines ( ) and ( ) show Nyquist frequency 1∕2𝛿 and sampling

frequency 1∕𝛿, respectively. Each figure from top to bottom corresponds to Case 1, 2,
3, and 5 in Table 1, respectively.

• For steady-state performance without modeling error, multirate
feedforward control for full-state tracking provides the best per-
formance.

• Multirate feedforward control with mode decomposition can pro-
vide the best intersample performance in transient response de-
pending on the frequency components of the reference and the
unmodeled dynamics of the controlled system.

Ongoing research focuses on the optimal mode selection depending on
the reference signal in higher-order motion systems.
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