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Abstract—To maintain the safe and accurate traction of electric
vehicles (EVs), driving force control (DFC) has been studied for
years. However, the traditional DFC requires the vehicle speed to
calculate the reference of wheel speed. It increases the complexity
and nonlinearity of the DFC system. Moreover, the saturation of
the force controller’s output challenges any attempt to design
and analyze DFC systematically. To overcome these issues, this
paper presents a novel DFC system in which the force controller
directly outputs the wheel speed reference. It alleviates the system
complexity, as the vehicle speed is only used to calculate the upper
and lower bound of the wheel speed limiter. The proposed DFC
configuration allows us to analyze system stability using the circle
criterion to address the wheel speed saturation. The effectiveness
of the proposed DFC and the stability analysis is verified by
graphical tests, numerical simulations, and experiments using an
in-wheel motor vehicle developed by our research group.

Index Terms—absolute stability, electric vehicles, driving force
control, in-wheel motor

I. INTRODUCTION

As public eco-awareness increases, transportation shifts
from traditional internal combustion engine vehicles (ICEVs)
to electric vehicles (EVs). This shift has led to a lot of research,
including wireless power transfer [1], energy storage [2], and
energy management [3]. Moreover, due to the characteristics
of the motor, EVs have some advantages regarding vehicle
motion control, as shown below.

• The torque response is much faster than that of ICEVs.
• The motor torque can be measured from motor current.
• In-wheel motor vehicles control each wheel individually.

Thanks to the above merits, various advanced motion control
methods have been studied for EVs. The typical are vibration
suppression control [4], [5], lateral stability control [6], and
range extension control [7]. This paper focuses on traction
control, which guarantees the safe motion of the vehicle even
if the road condition changes sharply.

From a literature review, there are many traction control
systems for EVs, such as anti-skid control (ASC), slip ratio
control (SRC), and driving force control (DFC). The ASC
is a traction controller based on disturbance observer [8].
It has a simple structure and is easy to implement, but
attaining reasonable control performance is too simple. By
directly controlling the slip ratio, the SRC can overcome the
demerit of the ASC [9], [10]. However, the limitation of the

SRC is the capability to collaborate with other higher motion
control layers because the reference value is the slip ratio. To
overcome the limitation, the DFC has been developed since
the last decade [11]–[13]. The DFC can suppress excessive
tire slippage, generate driving force according to the reference
value, and collaborate with other control layers.

Despite the great successes that have already been achieved,
the following issues still need to be resolved for the develop-
ment of DFC. The first is from an application point of view.
In the original idea of the DFC, the control system is designed
hierarchically, including the outer layer of force control and
the inner layer of wheel speed control [11]. The force control
layer outputs the slip ratio reference y∗. Then, the wheel speed
reference ω∗ is calculated from y∗ with the vehicle speed. In
addition, the driving force is not feedbacked directly but via a
driving force observer (DFO). For this reason, the DFC system
is quite complex and always nonlinear. This raises the second
issue from a theoretical point of view. It is too complex to
obtain a transfer function from y∗ to the output of the DFO. In
addition, there is a saturation of the signal y∗, which is placed
between the two control layers. Consequently, designing and
analyzing system performance and stability is still a challenge.

To overcome the issues above, the contribution of this paper
is twofold. First, a novel DFC with a more straightforward
configuration is proposed. In the proposed DFC, the force
controller directly outputs the reference of the wheel speed
ω∗ to the inner layer. It simplifies the system configuration, as
ω∗ is not calculated from the vehicle speed V . Vehicle speed
is only used to calculate upper and lower-bound wheel speeds.
In other words, the vehicle speed does not participate in the
dynamics of the inner layer. Second, this paper shows that
obtaining a transfer function from ω∗ to the estimated driving
force is possible. Thanks to this model, the absolute stability
analysis of the DFC system can be performed conveniently
using circle criterion [14], [15]. The circle is to handle the
wheel speed saturation, which is considered a time-varying
nonlinear gain with sector-bound characteristics. With the
criterion, the traditional force control of integral (I) can be
easily extended to proportional-integral (PI) ones.

The remainder of this paper is organized as follows. In
Section II, the modeling is formulated. In Section III, the
proposed DFC is presented. In Section IV, the stability analysis



(a) Vehicle model. (b) µ–λ curve.

Fig. 1: Single-wheel vehicle model.

of the proposed DFC is shown. In Section V, the system design
and analysis of DFC and the effectiveness of the proposed
system are demonstrated by simulations and experiments.
Finally, the conclusion is stated in Section VI.

II. VEHICLE MODEL

This paper focuses on the single-wheel vehicle model to
develop an idea for the new DFC. Fig. 1(a) shows the
longitudinal vehicle model and tire rotational dynamics. The
equations of each motion are expressed as

MV̇ = F (1)
Jω̇ = T − rF (2)

where M , V , F , J , ω, r, and T are vehicle mass, vehicle
velocity, driving force, wheel moment of inertia, wheel speed,
wheel radius, and motor torque, respectively. As an indicator
of the degree of tires’ slippage, the slip ratio is defined as

λ =
Vω − V

max(Vω, V, ϵ)
(3)

where Vω is calculated as Vω = rω and ϵ is a small
positive value preventing the zero division. Fig. 1(b) shows the
relationship between the driving force and the slip ratio called
Paceijka’s magic formula [16]. It has nonlinear characteristics,
and the relationship also occurs in some complexity of vehicle
motion control. Since the definition of λ for acceleration
differs from that for deceleration, λ is inconvenient to control.
Thus, in the traditional DFC approach [11], the control input
y, defined as follows, is controlled instead of the slip ratio.

y =
Vω

V
− 1. (4)

It is the same definition as the slip ratio for deceleration.
The relationship between λ and y in the domain of λ > 0
is calculated as

y =
λ

1− λ
(5)

which indicates that y almost equals to λ when λ is small.

III. PROPOSED DFC

This section shows the idea of directly controlling the wheel
speed and the control system. Fig. 2 shows the block diagram
of the proposed DFC. The DFC has a cascade structure with
a force controller CF in the outer layer and a wheel speed
controller Cω in the inner layer.

EV

Fig. 2: Block diagram of the proposed DFC.

A. Idea of direct wheel speed control

In general DFC system, the driving forces are fed back
through the driving force observer (DFO), which utilizes the
motor torque and the angular velocity of the wheels as

F̂ (s) = QF (s)
T (s)− Jsω(s)

r
(6)

where QF (s) = 1/(τs+1) is the low pass filter of the DFO.
From (2), if the driving force reference is given as T ∗ = rF ∗

and the estimated driving force is given by (6), the reference
wheel speed can be calculated as

ω∗ =

∫
r

J
(F ∗ − F̂ )dt. (7)

which can be seen as an integral control. Thus, it is reasonable
to generate the wheel speed reference from CF directly.

B. Control system

In the traditional DFC, the wheel speed reference of Cω

is calculated from y∗ with the vehicle speed measurement
V , which always makes the system nonlinear. On the other
hand, in the proposed DFC, the vehicle velocity is only used
to calculate the upper-bound of the wheel speed limiter by
replacing the output of the Cω with wheel speed, which is
given as

ωmax = (1 + ymax)
V

r
(8)

where ymax shows the limiter of y.
In addition, the wheel speed controller is the same as the

traditional controller as

Cω(s) = KωP +
KωI

s
(9)

where KωP and KωI are proportional and integral gains of the
wheel speed controller, respectively. As seen from Fig. 2 and
[11], the control performance of the proposed DFC is the same
as the traditional DFC, but the following criterion can be easily
applied to the proposed DFC. Further, the force controller can
be extended from the integral controller in the traditional DFC
to other types of controllers, such as the proportional-integral
ones, as

CF (s) = KFP +
KFI

s
(10)

where KFP and KFI are the proportional and integral gains
of the force controller.



IV. STABILITY ANALYSIS

This section will obtain a transfer function of the inner loop
from the after ω∗ to before ω∗

c wheel speed limiter, and the
analysis of the proposed DFC is designed with the Nyquist
plot.

A. Derivation of the transfer function for stability analysis

First, we will obtain a transfer function of the inner loop
from the speed reference ω∗ to the estimated driving force
F̂ . Solving the slip ratio definition equation (3) for ω and
differentiating it, the angular acceleration during driving and
braking is calculated as

ω̇ =


V̇

r

1

1− λ
+

λ̇V

r

1

(1− λ)2

V̇

r
(1 + λ) +

λ̇V

r
.

(11)

In addition, substituting (1) and (2) into (11), the motor torque
can be expressed as

T =


(
r +

J

Mr

1

1− λ

)
F +

Jλ̇V

r

1

(1− λ)2(
r +

J

Mr
(1 + λ)

)
F +

Jλ̇V

r
.

(12)

Here, if the slip ratio has a small value, the relationship
between λ and y can be approximately expressed as

1

1− λ
≈ 1 + λ ≈ 1 + y. (13)

Substituting (13) into (12) and normalizing it with the nominal
parameters and nominal slip ratio yn, the following relation-
ship is obtained as

T =

(
rn +

Jn
Mnrn

(1 + yn)

)
F (14)

where the subscript n indicates the nominal parameter. Con-
sidering the wheel speed control loop and (2), the motor torque
is given as

T (s) = Cω(s){ω∗(s)− Pω(s)(T (s)− rF (s))}

⇒ T (s) =
Cω(s)

1 + Cω(s)Pω(s)
ω∗(s) +

rnCω(s)Pω(s)

1 + Cω(s)Pω(s)
F (s)

(15)

where Pω = 1/Js. Substituting (2), (6), and (14) into (15),
the transfer function from the reference wheel speed ω∗ to the
estimated driving force F̂ is derived as

G(s) =
F̂ (s)

ω∗(s)

=
QF (s)Cω(s)

{rn + Jn

Mnrn
(1 + yn)}+ Jn

Mnrn
(1 + yn)Cω(s)Pω(s)

.

(16)

Here, we can analyze the system stability assuming a nominal
yn. Thanks to (16), the stability of the DFC system can be
analyzed via the feedback connection of H(s) = G(s)CF (s)

Fig. 3: Equivalent block diagram of DFC.

Fig. 4: Wheel speed limiter with sector-bound.

and the speed saturation (Fig. 3). Substituting QF (s), Pω(s),
(10), and (9) to H(s), it can be rewriten as

H(s) =
1

τs+ 1

Jn(KωP s+KωI)(KFP s+KFI)

(rn + ξ) Jns2 + ξ(KωP s+KωI)
(17)

where ξ = Jn(1 + yn)/Mnrn. Applying Routh–Hurwitz
stability criterion, H(s) is shown to be Hurwitz if the stable
poles are assigned to the speed control loop and the force
controllers are designed with positive gains.

B. Application of circle criterion to DFC

The absolute stability of the proposed DFC can be discussed
via the equivalent system in Fig. 3. As presented in [14], the
saturation block with the input ω∗

c and the output ω∗ can be
treated as a time-varying nonlinear gain ϕ which belongs to a
specific sector bound [α, β]. For example,

α ≤ ϕ(ω∗
c , t) ≤ β. (18)

As shown in Fig. 4, the wheel speed limiter belongs to
the sector with the upper-bound β = 1. The lower-bound α
can be selected from 0 to 1. Needless to say, α = 1 is the
trivial case as it makes the limiter disappear. As described
in the previous subsection, H(s) is Hurwitz. Therefore, the
following two design conditions can be considered.

• Condition 1 (α = 0): The DFC system is absolutely stable
if the H(jω) Nyquist plot lies to the right of the vertical
line defined by Re[s] = −1.

• Condition 2 (0 < α < 1): The DFC system is absolutely
stable if the Nyquist plot of H(jω) does not enter the
disk D(α, β) defined in Fig. 5.

V. EVALUATION AND DISCUSSION

In this section, the DFC system is designed based on the
theoretical conditions obtained in the previous section. The
proposed system is evaluated by simulations and experiments



Fig. 5: Circle criterion (0 < α < β). The red line shows the
circle D(α, β), and the blue and green lines show the H(s)
Nyquist plots for stable and unstable cases, respectively.

using an in-wheel motor electric vehicle developed by our
research group (Fig. 6). The main parameters of the vehicle
and in-wheel motors are summarized in Table I.

A. System design and analysis

In this paper, we only focus on the design of the force
controller. The wheel speed control is designed by pole
placement to the close loop system, including the nominal
transfer function Pω(s) = 1/Js and the PI controller Cω(s).
Through a fine-tuning process, the proportional and integral
gains of the wheel angular velocity controller Cω are selected
as 50.476 and 504.76, respectively. On the other hand, the time
constant of the low pass filter is selected as τ = 0.03.

Firstly, we examine Condition 1, which requires the selec-
tion of α = 0. For the sake of simplicity, we consider the force
controller of the integral type. As shown in Fig. 7(a), the max-
imum KFI that satisfies Condition 1 is 0.0023. However, this
integral gain value cannot guarantee good driving force control
performance. As described in Fig. 7(b), the estimated driving
force cannot follow the reference value with KFI = 0.0023.

Due to the above reason, we should utilize Condition 2. In
other words, the best we can hope for is to show absolute
stability with a finite domain. To this end, we will select a
reasonable value of the lower-bound α. In Fig. 4, ωmax is

TABLE I: Vehicle and in-wheel motor specifications.

Symbol Description Value
M Vehicle mass 925 kg
r Wheel radius 0.302m
J Inertia of rear wheel 1.26 kgm2

− Rated and maximum torque 137Nm, 340Nm
− Rated and maximum power 4.30 kW, 10.7 kW
− Rated and maximum speed 300 rpm, 1500 rpm

Fig. 6: FPEV-2 Kanon.
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Fig. 7: (a) Stability analysis using Condition 1, (b) Simulation
result of driving force (KFI = 0.0023).

calculated by (8). Since the slip limiter ymax is usually small,
we can let λs = ymax and approximate as

ωmax =
1

(1− λs)

V

r
. (19)

With the integral force control, the command ω∗
c can be

expressed as

ω∗
c =

KFI

s
(F ∗ − F̂ ) =

KFI

r

1

s
(rF ∗ − rF̂ )

⇒ r

KFI
ω̇∗
c = rF ∗ − rF̂ . (20)

Let J̃ = r/KFI and T ∗ = rF ∗, we have

J̃ ω̇∗
c = T ∗ − rF̂ . (21)

The above equation resembles the wheel’s rotational dynamics
(2). It means the force controller operates as a ”virtual wheel.”
Thus, the critical speed ωcri in Fig. 4 can be calculated with a
critical slip ratio λcri of the ”virtual wheel.” This critical speed
can be assumed as

ωcri =
1

(1− λcri)

V

r
. (22)

Consequently, the value of α can be calculated as

α =
ωmax

ωcri
=

1− λcri

1− λs
. (23)

Although not specified in this paper in Fig. 2, safety measures
such as setting the torque to zero and stopping the experiment
when λ = 0.7 is exceeded are also necessary for experiments.
It is reasonable to select λs = 0.05 and λcri = 0.7. Thus,
lower-bound α can be approximately selected as 0.3. Con-
cerning the sector [0.3, 1], in the following, we will evaluate
three candidates for the force controllers.

• Case A: KFI = 0.2 (a relatively small integral gain)
• Case B: KFI = 2.0 (a relatively big integral gain)
• Case C: KFI = 2.0 and KFP = 0.02 (PI controller)
Based on the circle criterion, graphical tests of three cases

are shown in Fig. 8. The system is stable in Case A as
H(jω) does not enter disk D. However, as shown in the green
line, the system becomes unstable when the gain becomes
more significant (Case B). Fortunately, introducing a small
proportional gain can recover the system’s stability. It is the
graphical test result of Case C, as shown by the pink line.
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Fig. 8: Stability analysis using Condition 2.

B. Simulation result

Figs. 9 and 10 show the simulation results of the driving
force and wheel speed for three cases, respectively. The
estimated driving force in the integral controller with small
feedback gain (Case A) shows no oscillation or divergence. It
is consistent with the stability analysis results using the circle
criterion shown in Fig. 8. However, the control performance
is relatively poor as the driving force does not match the
reference value. Thus, we increase the integral gain to attain
better control performance. Unfortunately, the system becomes
unstable if the integral gain is quite significant (Case B). As
shown in Fig. 8, the Nyquist plot enters the disk. Consequently,
the DFC system suffers severe vibration as shown in Figs. 9(b)
and 10(b). The problem can be solved by introducing a small
proportional gain (Case C). Fig. 8 shows that the Nyquist plot
does not enter the disk, and the system has enough stability
margin. Consequently, the driving force and wheel speed can
follow the reference value without fluctuation, as demonstrated
in Figs. 9(c) and 10(c). The simulation results also show that
the circle criterion can be used to predict control performance.

C. Experimental result

Figs. 11 and 12 show the experimental results of the driving
force and wheel speed for three test cases, respectively. As in
the simulation results, when the integral gain is small (Case
A), the estimated driving force does not follow the reference
value sufficiently. When the integral gain increases (Case B),
the system produces a vibration phenomenon. Due to the
introduction of the proportional gain (Case C), the system
stability is recovered, and the control performance of Case
C is much better in comparison with Cases A and B.

VI. CONCLUSION

This paper proposes a novel DFC in which the force
controller directly generates the wheel speed reference. The
proposed DFC simplifies the system configuration, as it is
unnecessary to calculate the wheel speed reference using the
vehicle speed. Furthermore, using the circle criterion, the
proposed DFC allows us to formulate the system’s transfer
function for stability analysis. Due to the circle stability
condition, we have a convenient graphical test for designing
and tuning the controller. Simulation and experiment results
are consistent with the proposed stability condition. In the
future, we will apply the proposed method to range extension
control and direct yaw moment control.
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Fig. 9: Simulation result of the driving force.
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Fig. 10: Simulation result of the wheel speed.
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Fig. 11: Experimental result of the driving force.
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Fig. 12: Experimental result of the wheel speed.


