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Abstract—This paper presents a two-degree-of-freedom 

control system for improving the attitude control performance 

under the existence of propeller’s loss of effectiveness (LoE). To 

deal with the long sampling time of attitude measurements, a 

multirate observer is designed to estimate the attitudes at every 

control period of the propeller actuator. Using the estimated 

attitudes, the LoEs are identified via recursive least squares 

(RLS) algorithm. Using the identified LoEs, the propeller speed 

references are adjusted to compensate the fault effect on the 

system. Some physical parameters of the attitude dynamics are 

also identified to adaptively update the feedforward controller. 

In summary, the proposed system only consists of practical 

algorithms which can be implemented conveniently in real 

applications. Experiments using a dual-rotor testbench show 

that the proposed system can quickly identify the time-varying 

LoEs. In comparison with a conventional singlerate control 

system without fault tolerance, the proposed system can reduce 

the pitch angle and yaw angle tracking errors by 69.3 % and 

39.6 %, respectively. 

Keywords— adaptive feedforward, fault identification, multi-

rate control, multi-rotor, recursive least square. 

I. INTRODUCTION 

Multi-rotors have been shown promising tools in many 
fields of human society [1]. To maintain the safe and stable 
motion of multi-rotors, it is essential to control not only the 
altitude [2] but also the attitude. To guarantee good attitude 
control performance, the following issues are indispensable. 

The first issue is the propeller’s loss of effectiveness (LoE). 
As demonstrated in Fig. 1(a), LoE happens as the actual thrust 
deviates from the desired value. If the LoE was not detected 
and compensated, unwanted moments might be generated. 
This might consequently deteriorates the attitudes tracking 
performance. To quantitatively estimate the LoE fault, state 
estimation approaches have been studied [3] - [10]. However, 
these works commonly treated the LoE fault as an augmented 
state 𝛼 of the system dynamics. This increases the size of the 
state space model and the computational effort. Moreover, the 
augmented system is nonlinear due to the multiplicity 
(1 − 𝛼)𝑢, where 𝑢 is the system input. Although the extended 
Kalman filter is applicable, it requires the Jacobian matrix 
calculation at every control period [3]. The adaptive 
exogeneous Kalman filter [4], the PI observer [5], and the 
robust observer [6] requires the linearization process. Besides, 
it might take few seconds to estimate the fault by the 
aforementioned methods [3] – [10]. As shown in Fig. 1(b), the 
fault is only detected about one second after it occurs [10]. It 
also takes about three seconds for the estimated fault to 
reasonably approximate the true magnitude. Some previous 
studies utilized the motor current [8] or propeller speed 
sensors [9]. Unfortunately, such sensors are not always 
available on the commercial multi-rotors, especially the small-
scale drones. 

The second issue is the sampling mismatch in the system. 
The control period of propeller actuators is commonly much 
shorter than that of the attitude measurements. It is well known 
that good tracking performance cannot be achieved if we 
directly feedback the long-sampling-time measurement. 
However, this issue has not been investigated in the literature 
of multi-rotor motion control. The works [3] - [10] merely 
utilized the continuous model or the discrete model with 
single-sampling-time. 

This paper presents an attitude control system that 
simultaneously addressing the aforementioned discussions. 
The proposal of this paper was motivated by the adaptive 
robust control of multi-sampling time systems with the 
application to linear motors [11] and machine tool [12]. For 
the sake of safety when conducting experiment, this paper 
uses a dual-rotor testbench. The system can imitates the yaw 
and pitch motion of the real multi-rotors. This paper assumes 
that the motor drives have enough capacity to compensate the 
faults. The proposed control system consists of the two-
degree-of-freedom controller (2DOFC), the multirate 
observer (MROB), and the recursive least square (RLS) 
parameter identification. The MROB is to perform the sensor 
fusion of attitude measurements (yaw, pitch) with the inertia 
measurement unit (yaw-rate, pitch-rate). The MROB outputs 
the estimated attitudes at every period of the propeller actuator 
control. The estimated attitudes are used to identify the LoEs 
and some uncertain parameters of the attitude dynamics via 
RLS algorithm. Fault compensation is realized by adjusting 
the propeller speed references. Furthermore, the feedforward 
controller is adaptively updated using the identified 
parameters. For the sake of paper space, this paper only 
focuses on the estimation and identification algorithm. For the 
purpose of system design and analysis, we have proposed 
several approaches by using circle criterion [2] and 
generalized frequency variable [13]. 

The reminder of this paper is organized as follows. The 
model of the test-bench under study is presented in Section 2. 
The proposed system is presented in Section 3, followed by 
the validation results in Section 4. Finally, the conclusions are 
stated in Section 5. 

II. MODELING OF THE TESTBENCH 

The model of testbench system is shown in Fig. 2. It has 
two propellers driven by direct current motors. The main 
specification of the system is shown in Table 1. In Fig. 2, 𝜃 
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            (a) LoE happens since 𝑡𝐹.                (b) LoE identification in [10]. 

Fig. 1. LoE: a typical propeller actuator fault. 



and 𝜑 denote the pitch and yaw angles, respectively. Their 
rates and accelerations are denoted by 𝑣𝜃(𝜑)  and 𝑎𝜃(𝜑) , 

respectively. The pitch and yaw motions are described as 

 ;p p p p y y y yJ a D v K M J a D v K M    + + = + + =   () 

where 𝐽#, 𝐷# and 𝐾# are the moment of inertia, damping, and 
stiffness (# = {𝑝, 𝑦}). The moments 𝑀# are generated by the 
thrusts. As shown in Fig. 3, the thrust is characterized as 𝐹𝑖 =
𝐶𝜔𝑖

2. Since the motor speed control loop is relatively fast, 𝜔𝑖 
is reasonably approximated by its reference 𝜔𝑖

∗. Linearizing 
the thrust characteristics, 𝑀# can be expressed as 
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where the moment constant 𝑆# are given in Table 1. 

Fig. 4 describes the conventional attitude control system 
with the feedback controllers 𝐶𝑓𝑏,𝑝(𝑦), the holder H and the 

sampler S. Let 𝑇𝑦𝑙  and 𝑇𝑦ℎ  be the sampling times of the 

attitudes and their rates, respectively. The pitch-rate and yaw-
rate can be measured directly using the inertia measurement 
unit (IMU). However, the attitudes are not measured directly. 
They are commonly obtained from some “virtual sensors” 
with the signal processing process. Typical examples are on-
board vision system or global positioning system (GPS). Due 
to the required time for signal processing,  𝑇𝑦𝑙  is usually much 

longer than 𝑇𝑦ℎ. As shown in Fig. 5, it is assumed that 𝑇𝑟 =
𝑇𝑢 = 𝑇𝑦ℎ = 𝑇𝑦𝑙/𝑁 where N is an integer (𝑁 ≥ 2). Here, 𝑇𝑟 is 

the period to generate the attitude reference, and 𝑇𝑢  is the 
period of propeller speed control. From (2), the reference 
speeds of the motor drives are calculated as follows 
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III. PROPOSED CONTROL SYSTEM 

A. Problem Setting 

If the propellers lost their effectiveness, the actual thrusts 
and the moment 𝑀# deviate from the desired values. Defining 
the LoE of the propeller 𝑖 as the variable 𝛼𝑖 ∈ [0, 1]. Under 
the existence of LoEs, the pitch and yaw moments become 
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Using the inputs 𝜔1,2
∗  and the outputs 𝜃, 𝑣𝜃 , 𝜑, 𝑣𝜑 ,  this 

paper aims to improve the performance of the conventional 
control system in Fig. 4 by estimating the LoEs 𝛼1,2, the states 

𝜃, 𝜑, and the parameters  𝐽#, 𝐷# and 𝐾# at every fundamental 
period 𝑇𝑠 = 𝑇𝑟 = 𝑇𝑢 = 𝑇𝑦ℎ . Unlike the conventional 

feedback control system, the proposed system in Fig. 6 
includes the multirate estimator, the adaptive moment-to-
speed transformation, and the adaptive feedforward 
controllers 𝐶𝑓𝑓,#. In summary, the proposed system is a type 

of direct adaptive control system. By using the stable desired 
poles to design the feedback controllers and setting upper-
bound and lower-bound for the identified parameters, it is 
possible to guarantee the convergence of the attitude angles to 
their reference values. This can be guaranteed even if the 
identified parameters do not converge. 

B. Multirate estimator 

Fig. 7 describes the configuration of the proposed 
multirate estimator, which includes the state observer (SoB), 
the LoE Identification (LoE-ID), and the parameter 
identification (PR-ID).  

SoB: From (1), the following discrete model is established 
with the fundamental sampling time 𝑇𝑠:  
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where 𝑘 denotes the time stamp. The state and input vectors 

are defined as 𝑥𝑝(𝑘) = [𝑣𝜃(𝑘)  𝜃(𝑘)]
T

, 𝑢𝑝(𝑘) = 𝑀𝑝(𝑘);  and 

𝑥𝑦(𝑘) = [𝑣𝜑(𝑘)  𝜑(𝑘)]
T

, 𝑢𝑦(𝑘) = 𝑀𝑦(𝑘) . Assuming that 𝑇𝑠  is 

short enough, the state matrix and input matrix are calculated 
as follows with the 2 × 2  identity matrix I2 
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and the output 𝑦𝑝(𝑘) consists of the pitch-rate and pitch angle 

measurement; the output 𝑦𝑦(𝑘)  consists of the yaw-rate and 

yaw angle measurement. Thus, the switching of the output 
matrix is expressed as 
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The state variables are estimated as 
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Fig. 2. Model of testbench system in half-quadrotor mode. 

 

 

Fig. 3. Thrust characteristics of the propeller. 

TABLE I.  DESCRIPTION OF TESTBENCH 

Operating space 52𝑐𝑚 × 52𝑐𝑚 × 62𝑐𝑚 

Pitch encoder resolution 2880 counts/revolution 

Yaw encoder resolution 4096 counts/revolution 

Inertial measurement unit (IMU) IIM-42652 6-Axis MEMS 

Thrust displacement 𝐿 = 0.158 𝑚 

Pitch moment constant 𝑆𝑝 5 × 10−5𝑁. 𝑚. 𝑠. 𝑟𝑎𝑑−1 

Yaw moment constant 𝑆𝑦 10 × 10−5𝑁. 𝑚. 𝑠. 𝑟𝑎𝑑−1 

Thrust constant C 7.7 × 10−7 𝑁. 𝑟𝑎𝑑−2. 𝑠−2 

 



In (8), the matrices 𝐴#, 𝐵#  are updated at every control 
period using the identified values of 𝐽# , 𝐷#  and 𝐾# . The 
observer gain matrix 𝐿𝑜#(𝑘) is designed using pole-placement 

to the pair of {𝐴#, 𝐶#(𝑘)}. During the inter-samples, the states 

are only corrected by using the available measurement of IMU 
[14]. This means the elements of 𝐿𝑜#(𝑘) associated with the 

attitude measurement are set to be zero during inter-samples. 
The pitch and yaw moment are updated by using the identified 
LoEs and the propeller speed references: 
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PR-ID: From (1), the following relationship is derived 
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where Y𝑝(𝑘) = 𝑀𝑝, Y𝑦(𝑘) = 𝑀𝑦(𝑘)  and 
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The RLS algorithm that estimating the parameters is 
described as follows [11] 
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where I3  is the 3 × 3   identity matrix, L𝐼𝑑#(𝑘)  is the 

identification gain, and P#(𝑘)  is the covariance matrix. The 

forgetting factor 𝜗  is chosen as a positive constant slightly 

smaller than one. Matrix T

#( )Φ k
is updated by the estimated 

values of the state observers. If the persistent excitation (PE) 
condition is not satisfied, no update is performed and 𝑃#(𝑘) =
𝑃#(𝑘−1) [15]. The values 𝑎𝜃(𝑘)  and 𝑎𝜑(𝑘) are calculated using 

the estimated values of 𝑣𝜃[𝑘]  and 𝑣𝜑[𝑘], respectively. 

 
( ) ( ) ( )( ) ( ) ( ) ( )( )1 1

, s sk k k k k k
a v v T a v v T

     − −
= − = −  () 

LoE-ID: Let 𝛽𝑖 = 1 − 𝛼𝑖  ( 𝑖  = 1, 2). The following 
relationship is formulated from (1) and (4) 
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From (12), the LoE values can be identified  using the RLS 
algorithm which is similar to that of the PR-ID. Note that, 
Y𝑙𝑜𝑒(𝑘) is updated using the estimated values sent from SoB 

and PR-ID. In summary, the SOB, LoE-ID and PR-ID shares 
their estimated values with each other. This adaptive 
estimation configuration has been applied to some practical 
applications, such as simultaneous estimation of sideslip angle 
and cornering stiffness for electric vehicle motion control [16]. 
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                                         Fig. 4. Conventional attitude control system.                                                                Fig. 5. Multi-samplings of the system. 
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Fig. 6. Proposed multirate attitude control system. 



C. Adaptive feedforward control 

Given the reference signals 𝜃∗  and 𝜑∗ , the feedforward 
control signals are updated as follows 
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D. Adaptive moment to speed transformation 

Let 𝜔𝑚𝑖𝑛,(𝑚𝑎𝑥) be the minimum (maximum) speed of the 

propeller, respectively; and define the limitation function as 
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If the LoE appears in a propeller, its speed should be 
increased to satisfy the required moments of the pitch and yaw 
motion controllers. However, the speed of the propeller must 
not exceed its minimum and maximum values. In summary, 
the reference speeds in Fig. 7 is calculated as follows 
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IV. EVALUATION 

A. Experimental setting 

The experimental system is shown in Fig. 8. By using the 
QUARC platform provided by Quanser, the control system is 
implemented in Matlab/Simulink. To imitate the actual multi-
rotor system, the sampling times of the pitch and yaw angle 
are set as 500 milliseconds in the testbench experiment. The 
sampling times of the yaw-rate and pitch-rate are set as 1 
millisecond, which is also the control period of the motor 
drives. To evaluate the proposed system, two tests were 
performed. The first test is to validate the multirate estimator. 
The second test is to validate the overall control system. The 
control gains are obtained via pole-placement with respect to 
the nominal dynamics (1). The poles of the closed-loop system 
including 𝐶𝑓𝑏,𝑝  and the pitch dynamics are placed at −0.9. 

The poles of the closed-loop system including 𝐶𝑓𝑏,𝑦 and the 

yaw dynamics are placed at −1.1. The nominal parameters are 
set as follows 

𝐽𝑝,𝑦 = {0.0220, 0.0140 } [𝑘𝑔. 𝑚2], 

𝐷𝑝,𝑦 = {0.0077, 0.0300} [𝑁. 𝑚. 𝑠. 𝑟𝑎𝑑−1], 

𝐾𝑝,𝑦 = {0.0380, 0.0250 } [𝑁. 𝑚. 𝑟𝑎𝑑−1]. 

The poles of the SoB are chosen as {−120, −40}. The 
forgetting factors are chosen as 0.999 for  the PR-ID, and 
0.999 for the LoE-ID. The experimental time is 120 seconds. 

B. Test 1: Validation of the multi-rate estimator 

The identified values of LoEs and the parameters are 
shown in Figs. 9 and 10, respectively. As described belows, 
three test cases were conducted for comparison. 

Test 1A (Fig. 9(a)): The LoEs were identified by directly 
using the measurement of the IMU and the low-rate attitudes. 
The parameters 𝐽# , 𝐷#  and 𝐾#  were fixed as the nominal 
values shown in the previous subsection.  
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Fig. 7. Configuration of the proposed multirate estimator.   

 

 

Fig. 8. Experimental system. 

 

 

(a)  Test 1A  

 

(b) Test 1B 

 

(c) Test 1C 

Fig. 9. Test 1: LoE estimation result.   

 

 

Fig. 10. Identified parameters in Test 1. 

 



Test 1B (Fig. 9(b)): The LoEs were identified by using the 
estimated values of the SoB. However, the physical 
parameters were fixed as in Test 1B. 

Test 1C (Fig. 9(c)): The LoEs were identified by the 
proposed multirate estimator. This means, the physical 
parameters were adaptively updated in real-time. The 
identified parameters were shown in Fig. 9. 

Thanks to the state observer, the results of Test 1B were 
smoothly improved in comparison with Test 1A which 
directly used the long sampling time attitude measurements. 
However, the results of Tests 1A and 1B were considerably 
influenced by the model uncertainty. By adaptively estimating 
the state and physical parameters, the system in Test 1C can 
quickly identify the LoEs. This fault detection is much faster 
than that shown in Fig. 1(b) [10]. 

C. Test 2: Validation of the overall control system 

Four test cases were performed as follows: 

Test 2A: The conventional control system in Fig. 4. 

Test 2B: Although the multi-rate observer is implemented 
to provide the estimated attitudes at high-rate, the LoE 
compensation and feedforward controller are not utilized. 

Test 2C: The system is almost similar to the proposed 
system Fig. 6 except the feedforward controller. 

Test 2D: The proposed control system in Fig. 6. 

Unlike almost the existing studies which merely 
considered the LoE as a simple step signal (Fig. 1(b)), this 
study examined the LoE pattern shown in Fig. 11. As shown 
in Fig. 11, propeller 2 is always healthy while propeller 1 
suddenly suffers a time-varying LoE 𝛼1 since 60 seconds. The 
latency of sensors [14] is not investigated, as it is not the main 
goal of this paper. 

The results of Test 2A are shown in Fig. 12. Due to the 
feedback of the long sampling time measurements, the system 
had to experience a noticeable vibration of the pitch angle and 
yaw angle. Moreover, the attitude tracking performance was 
considerably degraded due to the LoE since 60 seconds. The 
results of Test 2B are demonstrated in Fig. 13. By utilizing the 
multirate observer, the feedback controllers was provided with 
the high-rate and smooth estimated attitudes. Consequently, 
the control performance was improved. Especially, Test 2B 
did not experience the attitude vibration as in Test 2A. Next, 
the results of Test 2C are shown in Fig. 14. Thanks to the 
multirate observer and the compensation of the LoEs, the 
attitude tracking performance was remarkably improved in 
comparison with Tests 2A and 2B. Finally, the results of Test 
2D are shown in Fig. 15. This test case attained the best 
tracking performance, as the feedforward controller was 
adaptively updated. 

For thoroughly evaluating four test cases, root-mean-
square-deviation (RMSD) of the tracking errors are 
summarized in Table 2. It can be seen that, in comparison with 
Test 2A, the RMSD values of pitch and yaw tracking errors 
are respectively reduced 69.3% and 39.6% by the proposed 
system in Test 2D. 

V. CONCLUSIONS 

This paper proposed a multirate adaptive control system 
for improving the attitude performance of multi-rotors under 
the existence of propeller’s LoE. The proposed system was 

developed by practical RLS algorithms, which allow it to be 
implemented quickly and conveniently in real applications. 
The effectiveness of the proposed system has been evaluated 
by real-time experiments. The necessity of multirate control 
with adaptive feedforward and LoE identification has been 
proved by using a dual-rotor testbench. In future, the proposed 
system will be further improved to deal with the external 
disturbances and the latency of sensor measurements. The 
implementation of the proposed method to a real multi-rotor 
is another goal of this study. 
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                                                    (a) Pitch                                                                                                                   (b) Yaw 

Fig. 12. Test 2A: Conventional control system.   

 

      

                                                    (a) Pitch                                                                                                                   (b) Yaw 

Fig. 13. Test 2B: Multirate feedback control system. 

 

      

                                                    (a) Pitch                                                                                                                 (b) Yaw 

Fig. 14. Test 2C: Multi-rate feedback control system with LoE compensation 

 

      

                                                    (a) Pitch                                                                                                                    (b) Yaw 

Fig. 15. Test 2D: Proposed multi-rate control system with LoE compensation and adaptive feedforward controller.   

 

 


