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Abstract—Range extension via speed trajectory optimization
is an important issue for battery electric vehicles (EVs). To this
end, this paper contributes a practical approach to globally min-
imize the energy consumption of EVs passing through multiple
signalized intersections. The energy consumption is estimated
using a traffic flow Gaussian mixture model (GMM) obtained
from floating car data. Then, the optimal speed trajectory is
generated using dynamic programming (DP). The algorithm
is solved distributedly for each segment between two adjacent
intersections, thereby, alleviating the computational burden. Fur-
thermore, the proposal does not require vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) communication. Experimental
results demonstrate that the proposed algorithm can successfully
reduce energy consumption. The reductions are respectively
11.7% and 8.0% compared to the simple strategy with the con-
stant speed and acceleration/deceleration, and the conventional
method which independently minimizes the energy consumption
in each road segment between two adjacent intersections.

Index Terms—electric vehicle, energy minimization, floating
car data, Gaussian mixture model, multiple signalized intersec-
tions, speed trajectory optimization.

I. INTRODUCTION

EVs have been attracting more and more attention around
the world. Although EVs have a remarkable merit of fast and
accurate torque response [1], the short mileage per charge
is their major challenge. To overcome this problem, cruising
range extension by optimizing the use of electric energy has
been tackled from various points of view. Typical examples
are range extension control via motor torque/driving force
distribution [2], [3] and energy management [4], [5].

As the vehicle speed has a significant impact on energy
consumption, the focus of this paper is speed trajectory
optimization (STO) for EVs. From a literature review, this
issue can be solved by different methods, which vary due to the
constraint scenarios of the optimization problem. For instance,
STO for solar vehicles is proposed [6]. For another example,
considering the preceding vehicle velocity, STO for ecological
adaptive cruise control can be realized via quadrant dynamic
programming [7]. These studies are mainly for highways. On
the other hand, for urban road systems, many STO methods
considering traffic signals have been proposed. However, the
existing STO methods have the following issues.

Some previous methods proposed STO for multiple sig-
nalized intersections [8], [9]. The optimization in [8] was

solved in a centralized way by taking into account all the
road segments. However, due to the computational burden,
this is not suitable for a road including a large number of
intersections. In some studies, machine learning is used for
online optimization [9]. However, the computational burden
of onboard computers is still at a high level.

Most previous methods rely on V2I, however, it takes
time for connected and automated vehicles to spread [10].
In addition, it is essential to note that the cycle and off-
set time of some traffic signals are frequently adjusted to
achieve smooth traffic flow [11]. With respect to this scenario,
learning-based traffic signal estimation is important for more
practical STO. For instance, even in the case of using V2I
or V2V, previous methods utilized data-driven probabilistic
parameters to consider the uncertainty of information [12],
[13]. Furthermore, the STO for combustion engine vehicles
without V2I was developed based on the probability of passing
the next traffic signal, which can be estimated from a Gaussian
process regression using self-driving data [14], [15]. Recently,
by utilizing the floating car data collected by the ETC2.0
system [16], we presented a STO method for EVs operating
a single road segment with only two traffic signals [17].
However, it is still necessary to extend to deal with multiple
signalized intersections.

Based on the above discussion, this paper aims to contribute
anew STO method for EVs operating between multiple signal-
ized intersections. For more practical uses, the proposal does
not rely on the V2I or V2V. The method consists of two stages.
In the first stage, the energy consumption of EVs operating on
N-road-segment is predicted by using stochastic traffic flow
models (GMM). In the second stage, the estimated energy and
probability are used to optimize the speed trajectory to the next
traffic signal via DP. Unlike the centralized algorithm [8], the
proposed algorithm is solved in a distributed way for each
road segment. Unlike [9], the learning algorithm from floating
car data is only used for offline calculation of the GMM. This
reduces the computational burden and enables the practical
implementation of the proposal. This study focuses on low-
speed urban road conditions with coordinated controlled traffic
signals. The proposed method is developed based on the
battery EV prototype, which is driven by front in-wheel motors
(IWMs) of permanent magnet synchronous types.



Fig. 1. Longitudinal model of an EV with front IWMs.

II. MODELING

A. Energy Consumption Model

This study considers the longitudinal motion of EVs with
front IWMs which is described in Fig. 1. The equations that
describe the rotational motion of the wheel and the motion of
the vehicle are expressed as
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where J,,, Ty, Fu, Fpr, v, wy, 1, and M are the wheel’s
moment of inertia, motor torque, driving force, dragging force,
vehicle speed, wheel speed, wheel radius, and vehicle mass,
respectively. The subscript # means the position of the IWM;
fl and fr are front-left and front-right, respectively.

The driving force Fl is defined as (3) by the slip ratio Ax
and the load force of front N¢. The dragging force is given as
(4), which is the sum of air resistance and rolling resistance.
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Dq, py, b, and F), are the driving stiffness coefficient, rolling
resistance coefficient, viscous resistance coefficient, and air
resistance coefficient, respectively.

Energy consumption is estimated from the torque and wheel
speed. In this study, the inverter loss and the mechanical loss
of the motor are neglected, thus the input power P, is the
sum of output power P,;, copper loss P, and iron loss .
Considering the permanent magnet synchronous motor types,
the aforementioned powers are formulated as
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where K, p,, R, Ly, ¥, and R. are the motor torque
coefficient, number of pole pairs, copper loss resistance, g-axis
inductance, leakage flux, and equivalent iron loss resistance,
respectively. The formula (8) is derived under the assumption
that the d-axis current is very small in comparison with the
g-axis current [3].
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Fig. 2. Average speed definition for GMM.

Assuming that the slip ratio is small, the wheel speed is
approximated by the vehicle speed. Thus, the energy can be
seen as a function of vehicle speed.

B. Learning-based Traffic Flow Model

A traffic flow GMM model is generated from floating car
data to consider traffic signal constraints. The GMM G is the
sum of n two-dimensional Gaussian distributions g with the
average speed represented by X [17].
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Wi, 2k, and 7 are the mean, variance, and mixing coefficient,
respectively. As shown in Fig. 2, v; is defined as the average
speed between the signal 4 — 1 and signal ¢ which is estimated
from floating car data. Assuming the use of low-frequency
data, the average speeds that can be estimated even from low-
frequency data are chosen as the variables.

To obtain the probability distribution of v; when v,;_; is
given, the probability p is normalized by the total probability
of v;_; as shown in the following equation.
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where Awv is the discretization step.

III. SPEED TRAJECTORY GENERATION METHOD
A. Problem Setting

For each traffic signal on the route, a prediction horizon
and a control horizon are defined. In the prediction horizon,
energy consumption W;Z 41 is predicted using GMM and
DP, and in the control horizon, the energy- -efficient speed
trajectory v; is generated by DP using W ;.i+1 and the prob-
ability distribution of v;. The following optimization problem
for energy minimization is solved successively for all traffic
signals ¢ = {0,1,---, Nan} on the route.
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Fig. 3. Variable definitions for multiple signals.
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Fig. 4. Example of v}y, and dgignq; obtained from ETC2.0 probe data.

where [, L, N,y, N, «, and At are the time step and the
terminal time of the control horizon, the number of traffic
signals of the entire route and the prediction horizon, the
accessory power, and sample time of DP, respectively. The
distance d;, and energy consumption w; are defined as shown
in Fig. 3.

It is assumed that the route is determined before driving and
the location of the traffic signals can be known in advance from
the map. Uncongested road environments are assumed, and
constraints of surrounding vehicles are not considered. GMM
is used to consider the uncertainty of traffic signal period
and offset time. It is reasonable to assume that the onboard
system detects traffic signals within a certain distance from the
vehicle and determines if it can pass through. In addition, for
the optimization, dsjgna; and vy, are given from the floating
car data. As shown in Fig. 4, ds;gnqa means the distance for
deceleration in front of a traffic signal, and v;,, means the
lowest cruising speed.

B. Proposed Algorithm

Fig. 5 shows the flowchart of the proposed STO algorithm
consisting of two stages: an offline estimation of the energy
consumption through the prediction horizon of each traffic
signal and an online STO to the next traffic signal. In the first
stage, the energy consumption w;(v;_1,v;) is estimated for
each pair of v;_; and v;. Adding up the product of energy
w and probability p, the expected energy consumption of
the entire prediction horizon W; ;(v;—1) is estimated. In the
next online stage, the speed trajectory is optimized based on
the probability distribution of ©; and the terminal cost of
the expected energy consumption W;z +1(%%). The boundary
condition of the optimization problem depends on whether
the vehicle passes through signal ¢ or not. The online STO is
repeated each time the vehicle passes through a traffic signal
on its route.
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Fig. 6. DP table.

C. Offline Energy Estimation

In this subsection, the total energy consumption W; is
obtained by adding up the energy consumption on each road
segment between a pair of two consecutive signals.

1) Energy Estimation of Each Traffic Signal Pair: The
expected energy of each road segment is estimated as the
product of the probability from GMM and the energy from
DP. Energy is obtained from the pre-computed DP tables
by defining the boundary conditions as shown in Fig. 6.
DP(Vini, Vter, Ty d) means the energy calculated from the
DP table when v;y;, Vter, 1, and d are given as the initial
speed, terminal speed, total time, and distance. The cases are
classified by v; to properly estimate deceleration and stop
before the signal. If v; > w4, the energy consumption of
ith segment is estimated from the following equation.

%7 dz)
Vi

On the other hand, if v; < wjuy, it is assumed that the
vehicle decelerates or stops in front of signal ¢ + 1. Thus, the
section is divided into two parts: a subsection with constant
speed Veon, = max(v;_1,Viow), and another with a stop in
front of signal 1+ 1. The energy consumption can be expressed
by the following equation.
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From the above, the expected energy consumption of each
traffic signal segment is calculated from w and p. The expected



Velocity | Velocity

Vi1 Ui Vig1
Signal i+1 Signal i+2

Vi Vig1
Signal i-1 ~ Signal i Signal i+1 Signal i+2
@ ® @ ®

Signal i-1 Signal i
@ ®

Distance Distance

(a) Possible pass trajectories. (b) Possible stop trajectories.

Fig. 7. Optimization section and speed trajectory.

energy for all possible v;_; is obtained by summing expected
energy for all average speed v; at each v;_1, as

K
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where o means the index that identifies GMMs with different
training floating car data according to the passing and stopping
of traffic signals that are located before the target signal.

2) Energy Estimation of Entire Route: By adding up the
expected energy w, the energy consumption of the entire
prediction horizon W; is estimated. Energy consumption is
calculated sequentially starting from the terminal signal pair.
There are 2¥~! GMMs at the terminal signal pair of the
prediction horizon that are derived from various floating car
data classified by passing and stopping. If v; < vy, the
vehicle is considered to have stopped at signal 7 + 1.
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The above calculation is applied to other traffic signals from
behind. The energy of the next traffic signal pair is added to
the terminal cost. The terminal cost is determined by v;_;
considering both the passing and stopping situations.
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Finally, W; ;(v;—1) is obatined.

D. Online STO

As the final step, DP generates speed trajectories to signal
1+ 1 when traveling between signal 7 — 1 and 7. The estimated
energy consumption of the prediction horizon is added to the
objective function for the separation and nonseparation cases
of the probability distributions [17]. The boundary conditions
depend on the passing and stopping of signal s.

When passing through signal ¢, Fig. 7(a) shows the possible
speed trajectory. The initial position is the point where the
vehicle detects signal 7, and the terminal point is at signal ¢+1.
To optimize the transit time from signal ¢ — 1 to signal ¢ + 1,
the combination of v;_; and v; is optimized. Using GMM,
v;—1 is optimized based on the expected energy consumption
W;.i and the energy consumption for speed change from v; jn;
to v;—1.

. d_.
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On the other hand, when stopping at signal ¢, the possible
speed trajectory is shown in Fig. 7(b). The initial and terminal
position is at signal ¢ and ¢ + 1, respectively. To obtain the
probability distribution of v;, v;_1 is calculated from driving
data.

The generation strategies for the case when the probability
distributions separate and the case when they do not separate
are shown below:

1) Case 1: Probability Distribution Separates: The opti-
mization problem in the case of separate probability distribu-
tions is expressed as
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where 755, and Dsiop are the assumed pass and stop average
speeds, respectively. Both average speeds are defined as the
expected values of each separated probability distribution of
v;. The expected energy consumption of the future section is
added to the cost function, thus DP can optimize the speed
trajectory while also taking into account the traffic signals
ahead.

2) Case 2:Probability Distribution Does Not Separate:
Energy optimization problems are given below in the case of
non-separable probability distributions. The difference is that
the average speed is optimized on one dimension.

L
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Fig. 8. Experimental electric vehicle and road settings.

TABLE I
VEHICLE SPECIFICATION.

TABLE II
IWM SPECIFICATION.

Parameter Value Parameter Value
M 925 kg Lg 0.000 69 mH
Ly 0.01 L 0.18 Wb
b 15.4kg/s R 0.06 2
F. 0.047 Ns? /m? Pn 10
Joof 1.24kgm? K 1.8Nm/A
Ds 10 r 0.301m

IV. EVALUATION
A. Evaluation Setting

To evaluate the proposed method, an experimental vehicle
FPEV2-Kanon driven by front-IWMs is used (Fig. 8(a)). The
main parameters of the vehicle and the IWM are summarized
in Tables I and II, respectively.

For evaluation, this paper compares the proposed method
(Prop.) with the conventional method (Conv.) which considers
only the single traffic signal segment [17] and the con-
stant speed and acceleration/deceleration trajectory (Const.)
of 6m/s and 1m/s? without using an optimization algo-
rithm. 6 m/s is the energy-optimized speed for constant speed
operation considering accessory power (o = 600 W). This
study assumes an urban traffic environment such as the WLTC
driving cycle’s low mode. Due to the constraints of the
experimental field, a road segment with three intersections is
used for verification. The distances between intersections are
both 90 m. For evaluation, the inverter input power is measured
as Py, and the accessory loss is calculated from the running
time. The total energy is the sum of the inverter power and
the accessory power to run 228 m as shown in Fig. 8(b).

It is assumed that the signal condition could be detected
from dgignai = 24m, and the vehicle controller decides to
pass or stop. The learning data for GMM is generated by
a constant acceleration/deceleration trajectory with no prior
signal information. This is to simulate ordinary human driving
behavior. It is assumed that the starting time to approach Signal
1 is random. The prediction horizon when generating speed
trajectories to Signal 2 is from Signal 2 to Signal 3.

For optimization of DP, time and speed are discretized by
0.5s and 0.125m/s, respectively. Optimal speed trajectories
are generated and given to the experimental vehicle, which
is controlled by a combination of a PI controller and a FF
controller. Only regenerative braking is used for deceleration.

The simulation verifies the case when the offset time be-
tween traffic signals varies stochastically from —2.5s to 2.5
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Fig. 9. Simulation results. Offset time varies stochastically.
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Fig. 10. Energy consumption (simulation).

randomly with a uniform distribution, while the experiment
verifies the situations when the offset time fixed at 0s.

B. Stochastic Simulation

In the stochastic simulations, 300 simulation trials are per-
formed for each method for energy consumption comparison.
Fig. 9(a) is the estimated expected energy at each vy when
Voini = 6m/s, and it indicates that vy = 5.6m/s is the
energy-optimized speed.

The vehicle trajectories of Const., Conv., and Prop. are
shown in Figs. 9(b), 9(c), and 9(d), respectively. The color
of the line indicates the status of Signal 1 when the vehicle
reaches it. Vehicles using Conv. and Prop. methods can de-
celerate after Signal 2 when passing through both Signals 1
and 2. Notably, the proposed method allows some vehicles to
accelerate and pass through Signal 3 after stopping at Signal 1.
This operation is impossible by using the conventional method.
On the other hand, when passing through Signal 1, energy
reduction by the proposed method is small due to the low
accuracy of passage time. Figs. 10(a) and 10(b) show the
energy consumption distribution. Table IIT shows the expected
energy of the simulation. Although there are cases where the
use of the proposed method increases the energy, the expected
energy consumption of Prop. can be reduced by 5.2% and
2.9% compared to Const. and Conv., respectively.



TABLE III
EXPECTED ENERGY CONSUMPTION COMPARISON.

Simulation Experiment
Method Stop Signal 1 Pass Signal 1 Stop Signal 1 Pass Signal 1
Const. 30.7Wh 27.5Wh 30.4 Wh 24.4Wh
Conv. 30.2Wh 26.6 Wh 28.1Wh 24.5Wh
Prop. 28.8 Wh 26.4 Wh 23.9Wh 24.5Wh
35 T
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E‘ X
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Fig. 11. Energy consumption (experiment). The background color corre-

sponds to the traffic signal color when the vehicle reaches Signal 1.

C. Experimental Results

Fig. 11 demonstrates the energy consumption of the Const.,
Conv., and Prop. for some starting time from 0 to 60 s. Table III
shows the expected energy consumption. Energy consumption
is reduced in both cases when passing through and stooping
at signal 1, and overall the proposed method reduces energy
consumption by 11.7% and 8.0 % compared to Const. and
Conv., respectively. The vehicle trajectories in the experiment
are almost the same as in the simulation. In the experiment, the
uncertainty of the offset time is small, therefore the proposed
method using learning is more effective.

V. CONCLUSION

This study proposed a learning-based distributed stochastic
energy-minimization method that can be applied to multiple
signalized intersections without using V2I. The optimal aver-
age speed is obtained by predicting the expected energy by
GMM obtained from floating car data. The expected energy
is introduced as a terminal cost to generate speed trajecto-
ries between adjacent intersections. The proposed method is
shown to be suitably adapted to multiple intersections, as
it alleviates the computation burden. Stochastic simulation
and experiments show that the proposed method reduces
the expected energy. Moreover, the proposed method can be
straightforwardly extended to other EV prototypes. In the
future, we aim to extend online optimization by using model
predictive control considering additional constraints given by
the preceding vehicle.
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