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Abstract—By utilizing the camera installed in the front of a
vehicle, this paper proposes on-board camera-based driving force
control (CDFC) methods for autonomous electric vehicles driven
by in-wheel motors. The image processing algorithm can detect
the change in road surface conditions quickly and accurately.
This enables the CDFC to update the slip-ratio limiter in real-
time. Test results show that the proposed methods can improve
traction control performance and reduce inverter input energy.

Index Terms—Automotive system, Driving force control, Elec-
tric vehicle, Image processing, Motion control

I. INTRODUCTION

Due to the increasing awareness of global warming and
energy resource limitations, electric vehicles (EVs) have been
getting much attention. EVs are superior not only in terms of
transportation but also in vehicle motion control. For instance,
EVs’ torque response is faster and more accurate than that of
internal combustion engine vehicles. Especially the in-wheel-
motors (IWMs) allow the EVs to control the torque at each
wheel independently. It also has a relatively high bandwidth
since no drive shaft is required.

Thanks to the merits mentioned above, various studies have
been conducted using the IWM-EVs [1]–[6], including the
research on autonomous driving cars [3]–[6]. The following
fundamental issues should be solved to realize autonomous
in-wheel-motor electric vehicles (AIWM-EVs). First, knowing
the environment is an essential task because it allows the
control of the vehicle [7] and makes driving safer. Second,
developing the traction control system is essential, which can
effectively integrate with other motion control layers in the
autonomous driving system. However, no study deals with the
above issues simultaneously and systematically.

Through the literature review, traction control of IWM-EVs
can be organized into three main groups. The first group is
anti-skid control (ASC) based on disturbance observer [8], [9].
The second group is slip ratio control (SRC), which can be
realized by various techniques such as proportional-integral
control [8], linear quadratic regulator [10], fuzzy logic control
[11], model predictive control [12], and sliding mode control
[13]. The last group is driving force control (DFC), which
can be designed with a cascade configuration: the outer loop
controls the driving force, and the inner loop controls the
wheel’s rotational speed [14], [15]. Although ASC is simple
to be implemented, it is merely a rough traction control.
Thanks to IWM-EVs’ capability to accurately generate the
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driving force at each wheel, the DFC is the best candidate
for AIWM-EV. However, the following issue still needs to
be concerned. Almost the DFC and traction control methods
cannot quickly detect road conditions. Road friction is one
of the most important environmental parameters. It should be
known to update the slip ratio boundary, which calculates the
reference wheel speed in the DFC. Some road friction and
driving stiffness estimation methods have been proposed [16],
[17]. However, they are merely based on the motion sensors
such as the wheel encoder and accelerometer. The change in
the road condition only reflects on such sensors as the vehicle
enters the new road surface. Due to sensor noises and model
uncertainties, the existing methods always suffer from the
estimation values’ latency. In other words, the vehicle cannot
instantly detect the road condition change, but after a specific
time. Such latency might degrade traction control performance
and result in extra energy consumption of the EVs.

For the above discussion, this paper aims to develop new
DFC methods for AIWM-EVs by utilizing a camera, which is
commonly equipped in the autonomous driving system.

The camera is increasingly used to detect the environment
surrounding the ego vehicle. This evolution is due to the
progress of image processing, allowing information acquisition
by analyzing the camera’s images. This information can be
various, not only of lanes, obstacles, vehicles, and pedestrians
but also the friction of the road. In this paper, we perform
image processing from the camera installed in the front of the
vehicle to estimate the friction coefficient of the road surface.
In the literature, several articles deal with this road friction
estimation problem. These papers start from the same method:
to detect the type of surface using image processing tools
combined with machine learning or deep learning methods
[18], [19]. These models, combined with knowledge, allow
the estimation of the road friction coefficient. These models
use a camera’s data to classify the type of road by exploiting
only the camera’s image [20]. The arrival of deep learning
and, more particularly, of convolution neural network (CNN)
[21] allows for realizing more precise classifications and being
able to realize predictions in complex situations (for example,
bad weather, weak contrast). However, this power gain reduces
the execution speed of the model and requires more resources
[22]. For this reason, we perform a surface-type prediction
using traditional image preprocessing methods to reduce the
computation time and thus obtain a fast detection adapted
to the controller computation time. Our approach performs
classification by filtering pixels close to a reference color. Once
the nature of the road is detected in the image, the friction
coefficient estimation can be determined using knowledge
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(relation between the road surface and coefficient friction) and
optical geometry [23]. The estimated value is used to update
the slip ratio limiter of the DFC, which allows the vehicle to
run without tires’ slippage and reduce inverter input energy
on the low friction surface. Thus, the new method is named
on-board camera-based driving force control (CDFC).

The remainder of this paper is organized as follows. The
vehicle model is presented in Section II. The image processing
algorithm is presented in Section III, followed by the proposed
CDFC in Section IV. Experimental evaluations are presented
in Section V. Finally, the conclusions are stated in Section VI.

II. VEHICLE MODEL

As shown in Fig. 1(a), the rotational motion of the wheel
and the longitudinal motion of the vehicle body can be
described as

Jω̇i = Ti − rFd,i (1)

MV̇x,i =
∑

Fd,i (2)

where J is the wheel moment of inertia, ω is the wheel angular
velocity, T is the motor torque, r is the wheel radius, Fd is the
driving force, M is the vehicle mass, Vx is the longitudinal
velocity, and the subscription i denotes the wheel index. The
slip ratio can be described as

λi =
(Vω,i − Vx,i)

max(Vω,i, Vx,i, ϵ)
(3)

where Vω = rω and ϵ is a small positive value to prevent
division by zero. The relationship between the road friction
coefficient µ and slip ratio is shown in Fig. 1(b). It is
commonly described by Pacejka’s magic formula [24]:

µi = D sin[C arctan(Bλi − E(Bλi − arctan(Bλi)))] (4)

where B, C, D, and E are the fitting values obtained by
the experiments. When the slip ratio is relatively small, the
friction coefficient is approximately proportional to the slip
ratio. By using the driving stiffness Ds, the driving force can
be linearized as

Fd,i = Ds,iλi. (5)

(a) Vehicle model. (b) µ–λ curve.

Fig. 1: Vehicle and tire model

III. IMAGE PROCESSING

A. Problem setting of this paper

This section is to acquire information about the type of road
surface to deduce the friction coefficient.

In our experiments, wet blue polymer sheets simulate the
low friction surface. The ”blue-sheet” defines this surface in
the rest of this paper. In order to detect the type of surface, our
solution classifies each pixel of our image into three classes:
ROAD, UNKNOWN, and BLUE.

B. Process algorithm

As explained in III-A, we need to set up a process to detect
the presence of blue-sheet. In this way, we can deduce the
type of surface on which the vehicle drives. This detection
performs a membership test and estimates the type of road for
each pixel. The role process is structured in 5 steps, illustrated
by Fig. 2(a), as described below:

1) select region of interest (ROI): select an area in which
the process will apply, removing useless parts (like the
sky);

2) compute distance to reference color: the distance
between pixels color and color reference is computed
(norm 2);

3) filter distances: based on the distance calculated in the
previous step, only distances less than ϵ are selected as
true;

4) reduce image: reduction of the binary image to reduce
the computation time of the next steps;

5) apply confidence mask: application of a confidence
mask in order to avoid error propagation from bad
detection;

Fig. 2(b) shows the result obtained after the image process-
ing application. The output image is described by a matrix,
such that each coefficient (u, v) of this matrix represents the
predicted class weighted by a confidence level between 0 and
100. Here, the class belongs to {road, blue-sheet}. Pixels in
the center of the ROI have a higher confidence level than
pixels at the edge. The allocation of a confidence coefficient
can correct two problems; firstly, the color is not perceived as
the same color if the object is far away, and second, the world
projection of an object too far away is inaccurate. A value
close to 0 means that the prediction considers this position
unknown.

C. Surface grid map

Once this detection is done, the information must be kept to
use when the vehicle is above this zone. The idea is to create
a grid on which the information of the type of surface from
the prediction performs in the image frame.

1) Image Frame to 3D world: From the position of a pixel
in the image (u, v), it is possible to deduce its position in the
camera space based on the intrinsic parameters of the camera,
focal length (fx, fy), and optical center (cx, cy). In addition to
the intrinsic data, we need to know the relationship between
the vertical position of this pixel (v) and the distance between
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(a) Illustration of the image processing pipeline, showing the process
hyperparameters.

(b) Result obtained by applying image processing steps.

Fig. 2: Figures illustrate the process described in the sec-
tion III-B.

the camera (zc) and the real object represented by this pixel.
This relation (zc = z(v)) is obtained by calibrating two points
whose vertical position in the image and actual distance are
known. The position, in the camera frame, of the pixel is then
defined as

xc =
u− cx
fx

z(v) (6)

yc =
v − cy
fy

z(v). (7)

Knowing the camera’s extrinsic parameters and the vehicle’s
position with a GPS (xr, yr), it is possible to project this
position in the world reference frame. Obtaining, the final
transformation (u, v)

(xr,yr)−−−−→ (xw, yw, zw) describing the
position in the world frame.

2) Surface Road Grid: Detected information is saved in
a grid called ”Surface Road Grid.” Once the road surface

information is detected and projected from the image frame
to the world frame, the grid should be updated with the new
information. This grid is updated with each new detection,
keeping the previous information, which reduces the risk
of bad detections. The surface grid is defined by a matrix
G ∈ MM,N ([−1, 1]). The cell value reflects the type of
surface, -1 for ”road” and 1 for ”blue-sheet”, weighted by
a confidence coefficient. To construct this grid, one grid is
defined per class, B ∈ MM,N (B) for the blue-sheet surface
and R ∈ MM,N (R) for the road surface. As described above,
each pixel from the image camera is defined by a position and
surface prediction. The idea is to project this information in
this grid using the position of the vehicle (xr, yr) and grid
settings, size and resolution (s, r). Thus, pixel at position (u, v)
can be projected as

(u, v)
(xr,yr)−−−−→ (xw, yw, zw)

(s,r)−−−→ (i, j) (8)

where (i, j) defines the position in the grid. According to the
prediction made per pixel, the layer of the predicted class is
updated as {

Rij = Rij + p̂uv if p̂uv < 0
Bij = Bij + p̂uv if p̂uv > 0.

(9)

Thus the final grid is defined as

Gij =

{
Bij+Rij

|Bij |+|Rij | if |Bij |+ |Rij | ≠ 0

0 else.
(10)

In this way, the value of each grid cell is normalized between
[-1,1]; a value close to -1 represents a road surface, and a
value close to 1 represents a blue-sheet surface.

IV. PROPOSAL OF THE CONTROL SYSTEM

In this section, the camera-based driving force control is
proposed. Figures 3(a) and 3(b) show the block diagram of
the CDFC-1 and CDFC-2, respectively. Fig. 4 shows the
block diagram of the DFC. They are developed by a cascade
configuration. Note that the total driving force command
F ∗
all is given by the autonomous control layer, which is not

necessary to be presented here. The outer loop has a driving
force controller CF , and the inner loop has a wheel speed
controller Cω . In this paper, CF is an integral controller (I),
and Cω is a proportional–integral controller (PI). In the outer
loop, the driving force observer (DFO) utilizes the motor
torque and angular velocity to provide the estimated Fd. The
output of CF is yi, which is approximately the slip ratio in
either acceleration and deceleration situation and defined as

yi =
Vω,i

Vx,i
− 1. (11)

In addition, we set the limiter of ymax,i to prevent excessive
slippage and defined it as

ymax,i =
µ̂iFz,i

D̂s,i

(12)

where the value of µ̂i and D̂s,i can be obtained as follows. Pre-
liminary tests were conducted in both CDFC-1 and CDFC-2 to
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Fig. 3: Block diagram of the proposed CDFC.

EV×

Fig. 4: Block diagram of the driving force controller.

identify the µ̂i value on the different road surfaces. Based on
the image processing result, simple logic can be implemented:
IF image{xω, yω, zω} is # THEN µ̂i{xω, yω, zω} = µ#

where # belongs to the set of {ROAD, BLUE} in this
study. For comparison, CDFC-1 updates D̂s,i via a recursive
least square (RLS) algorithm based on Eq. (5) [14]. On the
other hand, CDFC-2 updates the driving stiffness via the
logic mentioned above: IF image {xω, yω, zω} is # THEN
D̂s,i{xω, yω, zω} = Ds,i#. In addition, the vertical load on tire
Fz,i can be calculated from the gyroscope and accelerometer.

V. EXPERIMENTAL EVALUATION

Section III presents the surface grid generation; the informa-
tion must be adapted to the controller. The first step is to create
the road profile for each side of the vehicle (right and left) from
the grid. This profile describes the local road profile by a one-
dimensional representation, where x is the distance, Pk(x) the
road profile, and side k, at a distance x. For any positions l,
given in the world (xl, yl), we can estimate this position in
the grid: (il, jl), we note T the application performing this
transformation. From this position, we can deduce the type
of surface using the grid map surface, Giljl . We note G the
application, such as G(i, j) → Gi,j . Thus, we can deduce the
profile as follows:

Pk(x) = G(T (xr + x cos(θr), yr + x sin(θr)± L)) (13)

where (xr, yr) denotes the current vehicle position in the
world frame, θr the current vehicle heading angle, and L
the distance from gravity center to driving wheel side axis
(left: −L, right: +L). Knowing the mapping between the

TABLE I: VEHICLE SPECIFICATIONS
Symbol Description Value
M Vehicle Mass 925 kg
r Effective wheel radius 0.302m
J Inertia of wheel 1.26 kgm2

surface type and the friction coefficient, µmap : {−1, 1} →
{µroad, µbluesheet}, the friction profile, side k, is defined by
the relation, Pµ

k (x) = µmap(Pk(x)).

A. Experimental setting

Fig. 5(a) shows the experimental vehicle, FPEV-2 Kanon,
developed by Fujimoto Lab. The vehicle is a four-wheel drive
system with IWMs and is powered by a lithium-ion battery.
In this paper, we use the vehicle as a rear-drive system. The
main parameters are shown in Tab. I. Fig. 5(b) shows the
road friction change scenario. The experimental scenario is as
follows. The vehicle goes straight on high friction roads and,
from the 0.5 s, enters low friction roads simulated by polymer
sheets sprinkled with water with the constant torque 200Nm.
Under this condition, three test cases are conducted; 1. Without
control, 2. With CDFC-1, 3. With CDFC-2. Assuming that the
information on the road surface is known from the camera,
this information is used to calculate ymax. µ̂ of high and low
friction road in CDFC-1 and CDFC-2 is set µ = 0.8 and
µ = 0.2, respectively. In addition, in CDFC-2, the controllers
were set Ds as 25 000Nm (µ = 0.8) and 4000Nm (µ = 0.2),
respectively. In the DFC, the integral gain of CF is set at 0.003,
and the integral and proportional gains of Cω are 50.476 and
504.76, respectively.

B. Experimental result

Figures 6, 7, and 8 show the result of the driving force,
slip ratio, and longitudinal velocity in each experiment. These
figures show that the CDFCs can maintain higher driving
forces than that without control. In addition, when entering
the low friction surface, the change of slip ratio of CDFC-2 is
faster than that of CDFC-1. This is because the RLS algorithm
takes a little time to estimate. To evaluate the effectiveness of
the two proposed methods, the energy needed when the vehicle
runs on the low friction road of each controller is shown in
Fig. 9. It shows that the CDFC-1 and CDFC-2 can reduce
the inverter input energy by 36.8% and 24.0%, respectively,
compared with the case without control. In addition, the reason
that the energy of CDFC-2 is lower than CDFC-1 is due to the
setting of the driving stiffness on high-friction and low-friction
roads.

VI. CONCLUSION

This paper proposes two on-board camera-based DFC meth-
ods for the autonomous driving of electric vehicles. The key
idea is to update real-time slip ratio limiters in the DFC using
camera image processing. The experimental result shows the
effectiveness of the proposed system. Compared with the case
without control, the CDFCs can suppress excessive slippage
and reduce the inverter input energy. In the future, we will
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(a) FPEV-2 Kanon. (b) Road friction change scenario.

Fig. 5: Experimental setup.
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Fig. 6: Experimental result without control.
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Fig. 7: Experimental result with CDFC-1.
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Fig. 8: Experimental result with CDFC-2.

428



w/o. CDFC-1. CDFC-2.

0

1

2

3

4

5

6

7

Fig. 9: Inverter input energy.

conduct further experiments in which the right and left wheel’s
road conditions are different.
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