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Multirate feedforward control enables perfect tracking control for the desired state trajectory at every sample as the
same number of the model order. The aim of this paper is the comparison of perfect tracking control approaches for
intersample performance in multi-modal motion systems. The multirate feedforward control has a trade-off between
the number of states for perfect tracking control and the reference sampling frequency. To balance the trade-off, the
states for the perfect tracking control can be selected by the mode decomposition. Intersample performance of each
approach in a multi-modal motion system is compared in both frequency domain and time domain.
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1. Introduction

Feedforward control based on exact model inversion en-
ables perfect tracking control [1] for the model of the con-
trolled system. The quality of the feedforward controller
directly results in tracking performance in high-precision
mechatronic systems such as wafer scanners [2], wire bon-
ders [3], and ball-screw-driven stages [4]. In industrial appli-
cations, the system is controlled in discrete time but the track-
ing performance should be improved in continuous time.

The exact model inversion has a challenge when the model
has nonminimum-phase zeros such as intrinsic and dis-
cretization zeros [5]. The single-rate stable inversion ap-
proach [6] generates the noncausal bounded feedforward in-
put for the model with nonminimum-phase zeros and pro-
vides perfect output tracking for every sample. However, it
cannot compensate for the zeros around —1 that cause the os-
cillating input and deteriorate intersample performance.

To improve intersample performance, the multirate feed-
forward control [7,8] is presented. The multirate feedforward
control provides perfect n states tracking for every n sam-
ples and prevents intersample oscillation. There is a trade-off
in the multirate feedforward control between the number of
states for perfect tracking control and the reference sampling
frequency. To balance the trade-off, the multirate feedfor-
ward control approaches based on modal form with additive
decomposition [9, 10] and multiplicative decomposition [11]
are presented. Both approaches select the states for perfect
tracking control and balance the trade-off to improve inter-
sample performance.

Although several approaches are available to design the
perfect tracking controller, the choice of the feedforward con-
troller can be arbitrarily and there is no comparison in terms
of intersample performance for perfect tracking controllers.
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The aim of this paper is the analysis of pre-existing perfect
tracking controllers in both frequency domain and time do-
main and provides the guideline to design the feedforward
controller to improve intersample performance. The main
contributions of this paper are as follows.

(1) Perfect tracking control approaches are described
focusing on improving intersample performance in
multi-modal motion systems.

(2) Intersample performance of each approach is vali-
dated in both frequency domain and time domain.

2. Problem formulation

2.1 Intersample performance in sampled-data control
The considered tracking control configuration is shown in
Figure 1, with reference r € R, input u € R, output y € R,
and error e € R. The n™ order continuous-time linear time-
invariant system G, = (Au, b, c.,0) is given by

() = AX(D) 4 Bot(f), v vvveerree e 1)
Y(E) = CoX (D). +vvvemmeemee e )

The discrete-time system Hy e (Ay,B;,Cy,Dy) of the
continuous-time system H., 2 (A, B, C., D,) discretized by
sampler S and zero-order-hold H in samplind time ¢ is gen-
erally defined as

Ay ‘ B, _ Ao ‘ A;.l(eAcf; -DB. | 3)
Cd ‘ Dd - Cc ‘ DC ’

X[K) = 20(KS). + oo 4)
The discrete-time system G4 £ (A4, bg,¢4,0) = SGH is
given by

[k + 1] = Agx[k] + baulk], -« vvvveeeeeeeeeeen (5)

y[k] = ch[k]. ............................... (6)

The control objective considered in this paper is to min-
imize the continuous-time error e(¢) that includes both on-
sample and intersample performance for the continuous-time
reference r(¢) that is assumed to be known in advance.
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Fig. 1. Block diagram of tracking control. The continu-
ous-time system G is controlled by the discrete-time con-
troller F with sampler S and zero-order-hold . The
objective is to minimize the continuous-time error e(?).

2.2 Single-rate feedforward control based on discrete-
time model inversion The one-sample forward shifted
system Gy of Gy from u[k] to y[k + 1] is given by

x[k + 1] = Adx[k] + bdbt[k], ..................... (7)
ylk + 11 = cqAgx[k] + cgbgulk]. -+« ovveennn (8)
For the system H = (A, B,C, D) with nonsingular D, the
inverse system H~! is generally defined as
o = A-BD™'C \ BD™!
-D'C ‘ D!

By inverting G4, the input u generated by the single-rate feed-
forward controller is given by

ulk] = G:;]r[k T T (10
where the single-rate feedforward controller G;' is given by

Ag—bu(caba) ' caAa | ba(cabs)™
—(caba)eqAy | (caba)”

G;‘:[ ] (11)

When G;l has unstable poles, it can be decomposed as

xslk+ 11| _|As O ||xsk]l|  |bs
[xu[k+1] _[0 Au] [xu[k] + b, rlk+1], -(12)
ulk] = [cs Cu] [ié%g vdrlk+1], - (13)

where |[1(Aj)| < 1 and |A(A,)| > 1. The bounded feedforward
input u is given by

ulk] = csx [kl + cyxy k] +drlk+ 1] ovvoevves 14)
where x follows from solving

X[k + 1] = Agx [k] + byrlk + 1], x;[—00] = 0---(15)
forward in time and x,, follows from solving

xyulk + 1] = A,x,[k] + byrlk + 1], xy[c0] =0----(16)

backward in time [6]. The generated feedforward input u pro-
vides perfect output tracking for every sample.

Note that although the feedforward input generated by the
single-rate stable inversion approach is bounded, the oscillat-
ing poles around A = —1 cannot be compensated. The oscil-
lating feedforward input can deteriorate intersample perfor-
mance.

2.3 Multirate feedforward control for full-state track-
ing To compensate for oscillating poles of the feedfor-
ward controller due to discretization, multirate feedforward
control [7] based on perfect state tracking is presented.

The n samples lifted system H , of H; < (Ayg,B;,Cy, Dy)
is generally defined as

z -1 _ | Ay | By
Ed - L"Hd‘En - [ C D
=d | =d
A:; ‘ A:;_le AZ_ZB[] .-+ A4B; By
C, D, [ s oo o

CdAd C,[Bd Dd

— (17)

CdA/[’fz C,[A;'fSBd CdA374Bd D, [
CdAgfl CdAlt’szd CdA‘”[’zBd -« C4B; Dy

ulin] = Loulk] = [ulnis] -+ ulniy+ -1 €R", - (18)
ylinl = Luylk] = [yini] - ylniy + =101 € R", - (19)

where £, is n samples lifting operator [12].
The n samples lifted system of G, is given by

The desired state trajectory of G, is given by the multirate
sampler for every n samples S, that is defined as

Xlin] = Suk(2) = R(EN0), v vvvverreeiaeennns (21)

where () is the desired state trajectory in continuous time.
By inverting the state equation of G ,, the input u generated
by the multirate feedforward controller is given by

ulk] = L' (g;lf[in +1] —inlédf[in])
= L;lg(;l(l —ZTAPR[iy A+ 1], e (22)

where z is shift operator in sampling time 6. The generated
feedforward input u provides perfect state tracking for every
n samples and improves intersample performance.

Note that the desired state trajectory % is given by the ref-
erence and its derivatives in continuous time for the system
without zeros in controllable canonical form. When the sys-
tem has zeros, the desired state trajectory generation method
is described in the next section. Although the multirate feed-
forward controller provides perfect state tracking for every n
samples, the sampling time of the desired state trajectory is
nd, and the higher the model order n is, the lower the refer-
ence sampling frequency 1/n¢ is.

2.4 Problem description From these discussions,
the optimal perfect tracking controller should be designed by
considering the following requirements.

(1) Oscillating poles of the feedforward controller due
to discretization is compensated by state tracking.
(2) States for perfect tracking control are selected to
make reference sampling frequency enough high.
The state tracking can be provided by multirate feedforward
control and the states can be selected based on the mode de-
composition. In this paper, two kinds of multirate feedfor-
ward controllers with mode selection in additive decompo-
sition [9, 10] and multiplicative decomposition [11] are de-
scribed and intersample performance is compared with pre-
existing perfect tracking control approaches.

3. Desired state trajectory generation

The single-input single-output continuous-time linear
time-invariant n' order system is given by

B(s) bps™ + -+ b1s+ by
TAG) T s+ au, S+ +ars+ag

- (23)



where n > m and by # 0. G, in controllable canonical form
s . .
GC,CCf = (Ac,ccfs bc,ccf’ Cecef» 0) is given by

xccf(t) = AC,ccfxccf(t) + bC,CCfu(t)’ """"""" 24)
y(l) = cC,CCfxCCf(t)’ .......................... (25)
where
0 1 0 0
Ac,ccf bc,ccf _ R
[ PR ] =1 o o 1 oo
—ay o e o—apy | 1
by - by 0 ‘ 0

The filter for the state trajectory generation is given by

Bty =L [B(s)_l] e 27

where L[-] is the unilateral Laplace transform. The desired
state trajectory in the controllable canonical form is given by

fccf(l)=fﬁ(l—7')7n(7)d7', .................... (28)
0
where
.
Reep(t) = |Rees (1) Reepna (D] weeeeeeee (29)
_ dn—l T
() = [1 dzﬂl] F(E). wvveeveeeees 30)

When B(s)~! has unstable poles, it can be decomposed as
B(s)™! = B;l(s) + B;l(s), ...................... 31

where all poles p; € C of B;' (s) are Re(p;) < 0 and all poles
pu € Cof B;'(s) are Re(p,) > 0. The filters of stable and
unstable parts for the state trajectory generation are given by

By(1) = L7 [B;l(s)], .......................... (32)
But) = L7 [B;l(—s)]. ......................... (33)
The stable and unstable parts of the desired state trajectory
are given by

ﬁs(t) = f Bs(l — -[-)7”(7-)(17-’ ................... (34)

X0 = f ) Bu(t = T (T)AT, vvveeeeee (35)

and the bounded desired state trajectory in controllable
canonical form %..s is given by

Reof(t) = Ry(B) + Ry(£).-voveeveemeee (36)

4. Multirate feedforward control with mode de-
composition

4.1 Definition of multi-modal motion system The
continuous-time multi-modal motion system is defined as

Ty T
Kkin
Ge5) = ) wmpasyar = D Gemoasa(9)+ GT)
5%+ 20wy, s + w

k=1 k=1

where {, w, k, and n, are the resonance angle frequency,
the damping coefficient, the mode gain, and the number

of modes, respectively [13]. G, in modal form G g =
(Ac,mods bc,moda Ccmod>s 0) is giVen by

xmod(t) = Ac,modxmod(t) + bc,mudu(t)a """""" (38)
Y(1) = ComodXmod(D)s -+ v v vevrvmeeeeeenen (39)
where
Acmod,1 o bemod,1
Ac,mod bc,mod _ -

= : , (40)

Ce,mod 0 o Acpmodp | bemodin

| ecmod - Cemodn, | 0
T

Xnod () = [Xmoa 1 (1) Xmodny (D] 1 (41)

s
and the subsystem Gc,mod,km = (Ac,mod,km s bc,mod,km’ Cc.mod ko s 0)
is given by

A b 0 1 0
c,mod.k,, ‘ c,mod.k,, —| - ‘Uf,,, 2wy, | 1] - (42)
Ccmod ky, 0 Kt 0 ‘ 0
-
noddy @) = [Xmod s, 008 Xmo 1 (D] oo vvveeo- (43)

The state transformation of the system H = (A, B, C, D) with
the state transformation matrix 7" is generally defined as

-1
T(H,T):[TAT TB]

CT- D

The state transformation matrix T,,,, from controllable
canonical form to modal form is given by

ai crr Ape 1
Tmod = [bc,lrtnd AZ;,,]Ddbz‘,mud] PRI (45)
Aap—1
1 o
where
Gc,mod = T(GC,CCf7 Tm()d): ...................... (46)
xmod(l‘) = TmdeCCf(t)' .......................... (47)

4.2 Multirate feedforward control with additive de-
composition The overview of multirate feedforward con-
trol with additive decomposition is shown in Figure 2. The
indices u of the selected modes are defined as

U= Akl € 1y oo B}y eee oo (48)

and the order v of the selected modes is defined as

where E,, and E consist of standard basis vectors of selected
and unselected modes, and the standard basis vectors of the
mode k,, is defined as

E;, = [02><2(k,,,—l) I, Ozxz(n,,,—km)]- """""" (51

The model reduction matrix extracting upper v states is de-
fined as

T, = [Iv va(n_y)] e (52)
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Fig.2. Block diagram of multirate feedforward control with additive decomposition.
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Fig.3. Block diagram of multirate feedforward control with multiplicative decomposition.

The system of the selected modes G, is given by

x#(t) = AC’#le([) + bc’”u([)’ .................... (53)
Y(E) = CopXp(£), v nmmemeeeee (54)
where
X0 (1) = Ty Ty Xoa(t), -+ vvmeeeensneeeeeen (55)
Aoy = TvaAc,modT,IlTI, ..................... (56)
By = TyTybipmods ~w - vvneeemmresnsnennss (57)
Cop = Cc,modT,;lTI. ........................... (58)
The discrete-time system of G, is given by
Z _ Ad,,u bd,,u
Giuy=8G.,H = [ cau | 0 | 59)
and the v samples lifted system of G4, is given by
-1 A,
Qd,/l = Lde’#LV === 1 = | L. (60)

By inverting the state equation of G w0 the input u generated
by the multirate feedforward controller with additive decom-
position is given by

ulkl = £ (B &uliy + 11 - By, A, %u0i])

VlgdL(I 7VA #)xﬂ[lv + 1], oo (61)

where X,[i,] = S,T,T,£04(t). The generated feedforward
input u provides perfect state tracking for every v samples for
the states corresponding to the selected modes p.

Note that although perfect state tracking for selected states
does not guarantee perfect output tracking, it can provide bet-
ter intersample performance because the desired state trajec-
tory is generated by the model with full states and the refer-
ence sampling frequency for selected v (< n) states becomes
higher from 1/né to 1/vé.

4.3 Multirate feedforward control with multiplicative
decomposition The overview of multirate feedforward
control with multiplicative decomposition is shown in Flg—
ure 3. The one- sample forward shifted system Gd mod £
(Ad,,m,d, bd,m(,d, cd,m(,d,dd,mod) of the discrete-time system in

modal form Gd,mnd é (Ad,mod’ bd,moda Cd.mod> 0) = SGc,mndq-{
from u[k] to y[k + 1] is given by
Admod ‘ 5a' mod Admod ‘ bamod
= med_| ’ : - (62
Cd,mod ‘ dd,nmd cd,madAd,mod ‘ cd,modbd,mod ( )
When v states corresponding to the modes u are selected,
I, o
m=s X)L G-l 63
[O(n V)XV o(n V) ( )

is defined with full rank S = [V VX] where V € R™ and

V, € R™0"Y) are a column space of an invariant subspace of
A = Ad mod and A>< = Ad mod — bd moddd modcd mod that cor-
respond to the poles of G, and the zeros of G,,.. Then the
state-space realizations are given by

Gorf = [ ‘i‘dvm”d ‘ Wby oad s }’ ............ (64)
cd,mod ‘ 1
z ANd mod ‘ E d.mod :|
Gyr = |— : ; e 65
! [ cd,mad(l_n) ‘ dd,mad ( )
Let the permutation matrix 7, be such that
Amr 0 bmr ]
T(Gmrf, Ty) = 0 Asr 0 s T (66)
Cmr Cmrr 1 ]
Amr 0 bsrr ]
TGyp . Ty) =| O Ay | by |ooveveeenn (67)
0 Csr dsr |

G, with states x,,,, and G, with states x, are given by

Gor é[ é’"’ b;” }, ......................... (68)
G, = [ ‘;15’ bﬁ}’ .......................... (69)

The product of the system H, = (A}, B;,C, D) and H, =
(A3, By, Cy, D) is generally defined as

A, BC, | B D,
HH,=| O As B, i (70)
C, DC, | DD,

The state transformation matrix T, is given by

I, X |

T,. =
s va(n—v) I(n—v)_

where X € R™) is the solution of the Sylvester equation
A X = XAy = By evvvnnnnennnenannnns (72)

= (Ains', st, Cps,d) = T(Gd,mod, TmsTp) = GGy is
given by

e 1 Amr bmrc‘vr bmrd
[ I?ms bms }: 0 Asr bsr e (73)
Cons d
Cor  Cyr d

The v samples lifted system of G,,, is given by

A

v _ B
Gmr z Lmar-ﬁyl - [ EW —(f)w ] ............ (74)

—mr



Fig.4. High-precision positioning stage with input cur-
rent u [A] generating force with linear motor and output
displacement y [m] measured by linear encoder.

By inverting the state equation of G, , the reference for the
single-rate inversion ry, is given by

k) = £ (B, Rl + 11 = By Ay nliv])
= L;lé‘;"mr(l — Ay R liy 1] (75)

where %,[i,] = S,T,T,sTyXm0a(t). Then, the input u gener-
ated by the multirate feedforward controller with multiplica-
tive decomposition is given by

ulk] = G;r' Fap[KL e e vvvemmmneeeeeiiine e (76)

where

G;rl _ Ay — bsrd;rlcsr ‘ bsrd;rl ]

-1 -1
_dsr Csr ‘ dsr

Note that the one-sample backward shifted system of G,
is given by

Ams bms
Gy = T Gamods TsT,) = [ A b }
An | B Apr byrcy | bud

:|: ¢ :;Y_] (r)m ]: 0 Asr bs‘r

Cms Ay c;r d;wczr ‘ d;rd

o b [ 4 |3 |
= 5 = : B P (78)

|: cmr ‘ dmr Csr ‘ d
where d;,.d = 0 and the output is given by

ylk] = cfnrxm,[k] + d;:,rc;xsr[k]- ................ (79)

It shows that the approach provides perfect output tracking
for every v samples with d;,. = 0 because the multirate inver-
sion provides perfect state tracking of x,,. for every v sam-
ples. If the system is decomposed as d;,. # 0, there is no
perfect output tracking because perfect state tracking of x,
is not guaranteed. Therefore, V and Vy should be selected
such that d;,. = 0.

5. Verification in multi-modal motion system

5.1 Conditions The verification is conducted in a
multi-modal motion system in Figure 4 that is given by

Gus) = 2, 1.1
a2 52 +2x0.024 x (27 X 30)s + (27 x 30)2

0 T
—40
—80

—120

—160
0 T T T 1117

—90 |
—180
—270 -

—360 Lol
10° 10 102
[ [Hz]

Fig.5. Bode diagram of controlled system: continuous—
time model G, (—), and discrete-time model G, (—).
Nyquist frequency is shown in a vertical black dotted line

(-e0).

T T T TT1TT

|G| [dB]

L B B B

/@G [deg]

Lol

= Gemod1 (8) + Gemoqa() - -vrvreerenes (80)
3.54 o 52 +2x0.02 X (27 X 25)s + 271 X 25)?
52 52 +2x0.024 x (27 x 30)s + (27 x 30)2
N N,
_ M) Z(S). ....................... (81)
Di(s)  Dy(s)

The sampling time is 6 = 4 ms. The continuous-time model
G, and the discrete-time model G, are shown in Figure 5.
The compared 8 approaches are summarized in Table 1.

5.2 Verification in frequency domain Intersample
performance is verified by the performance frequency gain
|E,| that is the steady state continuous-time tracking error nor-
malized by the step sine wave reference and is defined as

RMS(ej,(1))

|E (jw)| = m,

........................ (82)
where ry,(?) can only contains a single frequency at each fre-
quency. The performance frequency gain of the continuous-
time tracking error is shown in Figure 6. It shows that the ap-
proaches that do not compensate for oscillating poles of the
feedforward controller due to discretization make large errors
around Nyquist frequency. In low frequency, |E,| is smaller in
order of Case 1 < Case 5 = Case 7 < Case 3 < Case 2. From
these analysis, Case 2, 3, 5, and 7 are preferable approaches.
5.3 Verification in time domain The time domain
verification is conducted in the continuous-time reference tra-
jectory that is shown in Figure 7. The time series error e(?) in
simulation with sampling time 0.16 = 0.4 ms is shown in Fig-
ure 8. Root Mean Square error egpvs = RMS(e(?)) is shown in
Table 1. The result shows that Case 2 achieves the best inter-
sample performance because the reference signal excites up
to Nyquist frequency and Case 2 has enough high sampling
frequency compared to (anti) resonance frequencies.

6. Conclusion

In this paper, perfect tracking control approaches are de-
scribed focusing on intersample performance in multi-modal
motion systems. The model of the multi-modal motion sys-
tem is decomposed into combinations of the states that can be
selected for the perfect tracking control. The verification in a



Table 1. Root Mean Square error egrys in each ap-
proach. T, is the reference sampling time. G, and G5,
are the continuous-time model for the multirate and sin-
gle-rate inversion.

Case | Line Approach T, | Gemr Gegr | erms [um]
1 _ Single-rate Feedforward 5 - G, 1.1454
2 _— Multirate Feedforward 46 G, - 0.3292
3 _ Additive Decomposition 26 | Gemod, - 0.3868
4 Additive Decomposition 26 | Gemod2 - 13.4153
5 — | Multiplicative Decomposition | 26 | Ny/D; | N2/D; 0.3688
6 — | Multiplicative Decomposition | 26 | N»/Dy | Ni/D> 1.1555
7 - = | Multiplicative Decomposition | 26 | N;/D, | N»/D; 0.3688
8 - = | Multiplicative Decomposition | 26 | N»/D> | Ni/D; 1.1555
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Fig.6. Performance frequency gain of the continuous—
time tracking error. Nyquist frequency is shown in a ver-
tical black dotted line (----).

600
400
200

!
0.08
t [s]
Fig.7. Continuous-time 4th order polynomial trajectory

reference r(z). (+), (0), and (x) show sampling points every
0, 20, and 40.

multi-modal motion system shows that state tracking should
be used to compensate for the oscillating poles of the feed-
forward controller due to discretization. Ongoing research
focuses on the optimal mode selection when the sampling fre-
quency is not enough high for the (anti) resonance frequen-
cies and robust performance against the modeling error.
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