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Energy-efficient driving is required in aiming for a low-carbon society. This study aims to obtain the optimal speed
trajectory by a stochastic model derived from floating car data. In this paper, the time required to reach the next traffic
light and the probability of passing through it are estimated by a Gaussian mixture model (GMM) based on the data,
and dynamic programming (DP) is utilized to minimize the energy cost function. This proposed approach enables the
calculation of optimal speed trajectories where there is no vehicle communication and traffic signals cannot be detected
by an onboard vision system. Simulation results demonstrate that the proposed system reduces the energy required to
reach the next traffic light by 2.4 % in comparison with human driving.
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1. Introduction
1.1 Energy Efficient Driving Electric vehicles (EVs)

are gaining more attention and the number of EVs around the
world is increasing. The fast response of motors and low
greenhouse gas emissions in life cycle assessments (1) are the
advantages of EVs. On the other hand, range limitations due
to the low energy density of the battery and long charging
time are the problems of EVs. Since range extension simulta-
neously reduces driving costs and greenhouse gas emissions,
many studies have been done in various environments and
situations, like on highways (2), following a preceding car (3),
and passing traffic signals (4)∼(6).

Due to the range limitations, EVs are well suited for use in
inner-city environments. Therefore, this study focuses on the
inner-city road, but many stops and accelerations are required
due to traffic signals, congestion, pedestrians, etc. Especially,
traffic signals are a major cause of stops. Thus, it is impor-
tant to consider the traffic signal constraints in generating the
optimal speed trajectory on urban roads.

1.2 Optimal Trajectory Considering Traffic Signals
To minimize energy for passing traffic signals, two different
methods, integrated traffic signal control and optimal speed
trajectory of individual vehicles, are used. The subject of this
study is to obtain an energy-optimized speed trajectory.

In many previous studies, traffic signal information is given
by Vehicle-to-Infrastructure communication (V2I). Assum-
ing V2I is available, there are previous studies that consider
multiple signals (4) (5), models that consider vehicle waiting
queues before signals (7), and models that consider V2I un-
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certainty in a probabilistic model. Some studies consider
surrounding vehicles by using vehicle-to-vehicle communi-
cation (V2V) (8).

However, V2I and V2V have not yet been put into prac-
tical use, and there are also issues such as communication
delays and communication failures. Then, some studies have
proposed methods not to rely on V2I or V2V. For instance,
based on seld-driving data and the detection position of traf-
fic signal state changes, a stochastic model has been used to
predict the time to pass through the next traffic signal (9).

1.3 Traffic Flow Estimation Using Data As the in-
formation society progresses, vehicle transit data is being ac-
cumulated and used to estimate urban traffic flow. To collect
a wide range of transit data, this research uses low-frequency
floating car data like ETC2.0 probe information (10). The data
is used to estimate the urban link travel time (11) and to es-
timate traffic signal information, such as the cycle and split
time of a single traffic signal (12) (13).

The above studies aim at estimating the travel time and the
signal information, and none of them model the traffic flow
between traffic signals to derive the optimum speed trajectory
for each vehicle. This study attempts to model the traffic flow
suitable for deriving the optimum speed trajectory between
traffic signals.

1.4 Paper Contributions This paper proposes a new
method to optimize the vehicle speed trajectory from floating
car data without utilizing V2V and V2I. For simplicity, this
study targets the modeling of the relationship between adja-
cent traffic signals. A GMM estimates the probability distri-
bution of the average speed between signals based on floating
car data, and DP generates the optimal speed trajectory by
using the estimated speed and the passing probability from
the probability distribution. Using the proposed method, the

© 2023 The Institute of Electrical Engineers of Japan.



v

Ff

Nf

FDR

Mg

Nr

Tf

Fig. 1. Modeling of an EV with front IWMs.

expected energy consumption between adjacent signals is re-
duced.

2. Modeling
2.1 Vehicle Model Fig. 1 shows the force analysis of

an EV with front in-wheel motors (IWMs). In this research,
only the straight driving condition is considered. The equa-
tions that describe the rotational motion of the wheel and the
motion of the vehicle are expressed as

Jωf
dωi

dt
= Ti − rFi, i = {fl, fr}, · · · · · · · · · · · · · · · · · · (1)

M
dv
dt
= Ffl + Ffr − FDR, · · · · · · · · · · · · · · · · · · · · · · (2)

where Jωf , Fi, FDR, v, ω, r, and M are the front wheel’s mo-
ment of inertia, the driving force, the dragging force, vehicle
speed, wheel speed, wheel radius, and vehicle mass, respec-
tively.

The driving force Ff and the load force of the front Nf are
given as (3) and (4). Since only a high-µ road surface is con-
sidered, the driving force can be approximately expressed by
the driving stiffness coefficient Ds and the slip ratio λ.

Ff ≃ DsNfλ, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3)

Nf =
1
2

(
lr
l

Mg −
hg

l
M

dv
dt

)
, · · · · · · · · · · · · · · · · · · · · · (4)

λi =
ωir − v

max(ωir, v, ϵ)
, · · · · · · · · · · · · · · · · · · · · · · · · · · · · (5)

where l, lr, hg, and ϵ are wheelbase, distance from the cen-
ter of gravity (CG), the height of CG, and a small positive
number to prevent division by zero, respectively.

The dragging force is given as (6), which is the sum of air
resistance and rolling resistance.

FDR = µrMg + b|v| + Fav
2, · · · · · · · · · · · · · · · · · · · · · · · (6)

where µr, b, and Fa are the rolling resistance coefficient, vis-
cous resistance coefficient, and air resistance coefficient, re-
spectively.

Based on the above equations, the IWM torque is ex-
pressed as follows:

Ti =
rFDR + M dv

dt

2
+ Jωf

dωi

dt
. · · · · · · · · · · · · · · · · · · · · (7)

Besides, the relationship between the wheel speed and the
vehicle speed can be derived as

ωi = (1 + λi)
v

r
. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (8)

2.2 Modeling of Inverter Input Power The inverter
input power is given as (9). In this study, the inverter loss and
the mechanical loss of the motor are neglected.

Pin = Pout + Pcu + Pfe. · · · · · · · · · · · · · · · · · · · · · · · · · · ·(9)
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(a) Scatter plots of v1 and v2. (b) The fitted result of Fig. 2(a).

Fig. 2. Actual floating car data and the fitted result.

The input power is the sum of output power Pout, copper loss
Pcu, and iron loss Pfe, where |Id | << |Iq| is assumed (14). As-
suming that the motors are of permanent magnet synchronous
types, each of them is defined as

Pout =
∑
all

ωiTi, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (10)

Pcu =
∑
all

3
2

R
(

Ti

Kt

)2

, · · · · · · · · · · · · · · · · · · · · · · · · · (11)

Pfe =
∑
all

3
2

(ωi pn)2

Rci

L2
q

(
Ti

Kt
− ωi pnΨ

Rci

)2

+ Ψ2

 , (12)

where Kt, pn, R, Lq, and Ψ are motor constant, number of
pole pairs, copper resistance, q-axis inductance, and leakage
flux, respectively. Equivalent iron loss resistance Rc is given
as

1
Rci
=

1
Rc0
+

1
Rc1|ωi pn|

, · · · · · · · · · · · · · · · · · · · · · · · · (13)

where Rc0 and Rc1 are both equivalent iron loss resistances.
2.3 Proposed Stochastic Traffic Flow Model The

relationships between adjacent signals are estimated by float-
ing car data. To model the relationship between each adja-
cent traffic signal pair, the average speed in front of the first
traffic signal v1 and the average speed between signals v2 are
measured and plotted as a scatter plot. Distribution plots of
average speeds using actual floating car data are shown in
Fig. 2(a). Position data every 200 m of vehicles equipped
with ETC2.0 measured in Chiba, Japan in September 2019 is
used as floating car data. In this case, the distance between
signals is about 650 m.

Due to the stopping and passing of traffic signals, the scat-
ter has some clusters as shown in Fig. 2(a). Thus, the GMM
is used to describe the data and is given as

p(X) = Σn
k=1 πkN(X | µk,Σk), · · · · · · · · · · · (14)

N(X | µk,Σk) = (2π | Σk | )−
1
2 e{(−

1
2 )(X−µk)TΣ−1

k (X−µk)}, (15)
X = [v1 v2]T, · · · · · · · · · · · · · · · · · · · · · · · · (16)

where µk, Σk, and πk are the mean, variance, and mixing coef-
ficient, respectively. The fitted results of Fig. 2(a) are shown
in Fig. 2(b). Using these data, the probability distribution of
v2 is numerically calculated.

3. Proposed Trajectory Generation
3.1 Optimization Problem The optimization prob-

lem to minimize energy is as follows. The objective function
is the power consumption required for driving and the con-
stant accessory power loss. The final step L is calculated by
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(b) Average speed scatter plot.

Fig. 3. Traffic flow: distance is 120 m

the estimated v̂2 from the GMM presented in the previous
section.

min
v(k)

E

 L∑
k=0

(Pin(k)∆t + α∆t) − ϕ(v(L))

 , · · · · · · · · (17)

s.t.: vmin ≤ v(k) ≤ vmax, · · · · · · · · · · · · · · · · · · · · · · · (18)
Tmin ≤ T (k) ≤ Tmax, · · · · · · · · · · · · · · · · · · · · · (19)

x(k + 1) = x(k) +
v(k + 1) + v(k)

2
∆t, · · · · · · (20)

Pin(k) = Pout(k) + Pcu(k) + Pfe(k), · · · · · · · · (21)

∆t = 1, L =
d
v̂2
, · · · · · · · · · · · · · · · · · · · · · · · · · (22)

v(0) = vstart, v(L) = v̂end, · · · · · · · · · · · · · · · · · (23)
x(0) = 0, x(L) = d, · · · · · · · · · · · · · · · · · · · · · · (24)

where E denotes the expected value, and d, α, and ϕ(v(L))
are the distance between signals, constant accessory power,
and cost function based on termination kinetic energy, re-
spectively. As the boundary condition of speed, vstart is the
input variable, and v̂end is the estimated terminal speed.

In this study, the accessory power consumption is set to
500 W. Taking into account power consumption proportional
to time, there exists a speed at which the power consumption
is minimized in steady-state driving.

3.2 Classification of Average Speed Distribution
When passing through the first signal, speed distributions can
be classified into two categories based on the relationship be-
tween the two traffic signals. The vehicle trajectories and av-
erage speed distributions for 120 m and 240 m between sig-
nals at a signal cycle of 60 s, a split time of 30 s, and a con-
stant speed of 6 m/s are shown in Figs. 3(a), 3(b), 4(a), and
4(b), respectively. When distance between traffic signals is
120 m, the distribution of v2 separates, where v1 is 6 m/s. On
the other hand, it does not separate when the distance be-
tween signals is 240 m. Without signal information, some
cars may stop in front of a traffic signal for a long time and
travel unnecessarily fast. The proposed method estimates v2
to reduce power consumption by eliminating unnecessary ac-
celeration/deceleration.

3.3 Proposed Algorithm Fig. 5 shows the flowchart
for deriving the optimum speed trajectory. First, floating car
data is obtained and v1 and v2 are measured and plotted on
a two-dimensional scatter plot. Next, using the method de-
scribed in subsection 2.3, the speed distribution map is mod-
eled using the GMM, and the probability density distribution
of v2 is obtained when v1 is given as the input variable. There
are two different methods to be applied depending on whether
the probability distribution is separated. Whether the speed
distributions are separated depends on whether the passing
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(b) Average speed scatter plot.

Fig. 4. Traffic flow: distance is 240 m
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Fig. 5. Flowchart of the proposed algorithm.

signal cycles are identical or separated. Both of the two meth-
ods use DP to solve the optimization problem which is pre-
sented in subsection 3.1 and generate an optimized trajectory
by using the estimated average speed from GMM.

When the probability distribution is not separated, the
speed trajectory is obtained by generation method 1, and
when the speed distribution is separated, it is generated by
generation method 2.

3.3.1 Generation Method 1 To solve the optimiza-
tion problem by DP, the average speed between signals v̂slow
is determined. The v̂slow is determined as the speed at which
the cumulative distribution function of v2 is k. k is a design
parameter, and if k is large, v̂slow is large. In this paper, k is
0.25, which is to prevent deceleration due to early arrival at
the second signal. Selecting v̂slow as v̂2 and v̂end, the possible
optimized speed trajectory is shown in Fig. 6(a).

3.3.2 Generation Method 2 When the probability
distribution of v2 is separated, two different average speeds
between signals are estimated, v̂pass is assumed to pass and
v̂stop is assumed to stop. The trajectory is selected by eval-
uating the expected energy using the passing probability p
derived from the GMM.
v̂stop and v̂pass can be defined as the v2 at which each of the

separate cumulative distribution function of v2 is 0.5, where
v̂stop < v̂pass. p is calculated as the ratio between the area of
the probability distribution assumed to pass and the overall
area.

Using v̂stop and v̂pass, DP generates the two optimal trajec-
tories. The terminal velocity is set to vpass for the pass tra-
jectory and 0 for the stop trajectory. Fig. 6(b) shows the
possible three trajectories when the probability distribution
is separated. It consists of speed trajectories generated by
the DP using v̂stop and v̂pass and a speed trajectory that is as-
sumed to pass but fails to pass. The power consumption cal-
culated from DP is represented by Ĵpass, Ĵfail, and Ĵstop, re-
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Fig. 7. Experimental vehicle (FPEV2-Kanon).

Table 1. Vehicle Specification.

Parameter Value
M 860 kg
hg 0.51 m

l, lr 1.715 m, 0.702 m
µr 0.01
b 15.4 kg/s
Fa 0.105 Ns2/m2

Jωf 1.24 kgm2

Ds 10

Table 2. Specification of IWM.

Parameter Value
Lq 690 µH
Ψ 0.18 Wb
R 0.06Ω

Rc0 300Ω
Rc1 0.13Ω
pn 10
Kt 1.8 Nm/A
r 0.301 m

spectively. The speed trajectory of the human-operated vehi-
cle that forms the floating car data is considered to be a pass-
ing trajectory. The proposed method adds a speed trajectory
that decelerates in advance assuming a stop, and the choice
between the pass or stop trajectory is decided by comparing
the expected value of power consumption. Using the passing
probability estimated from the GMM, the expected energy
value of the assumed passing trajectory can be expressed by
the following equation:

E[Ĵexp] = pĴpass + (1 − p)Ĵfail. · · · · · · · · · · · · · · · · · ·(25)

Then, E[Ĵexp] and Ĵstop are compared, and the trajectory with
the smaller energy consumption is selected.

4. Evaluation Test
4.1 Evaluation Setting To evaluate the proposed

method, a simulator is made based on the electric vehicle
FPEV2-Kanon (Fig. 7). The main parameters of the vehi-
cle and the IWM are summarized in Tables 1 and 2, respec-
tively. The simulation setting is as follows. The traffic light
cycle is 60 s, and the green and red durations are 30 s. The
onboard camera can detect the traffic signal within 24 m of

Table 3. Simulation Verification Cases.
Case Description

1 Comparison: proposed method and no-control when stops at the first signal
Distance: 60 m, Offset time: 30 s, Method 1

2 Comparison: proposed method and no-control when passing the first signal
Distance: 240 m, Offset time: 0 s, Method 1

3 Comparison: pass and stop trajectories when passing the first signal
Distance: 120 m, Offset time: 0 s, Method 2

4 Comparison: power consumption of stop and pass trajectories
Distance: 120, 420, 480 m, Offset time: 0 s, Method 2

the traffic signal, and the vehicle controller decides to pass or
stop. Assuming uncrowded road conditions, the vehicle can
freely determine its speed between a minimum and a max-
imum speed. The data used for learning the GMM is gen-
erated as a constant acceleration/deceleration trajectory with
no prior signal information that simulates human driving, and
the constant acceleration/deceleration is decided by the on-
board camera information. It is assumed that the starting
time to approach the first signal is random. As indicated in
the speed trajectory generation method, the speed trajectory
generation method differs depending on the distance between
signals and is therefore verified separately. Four cases which
are shown in Table 3 are verified.

4.2 Results and Discussion
Case 1 The figures of the speed trajectory, transit tra-

jectory, and energy are shown in Figs. 8(a), 8(b), and 8(c),
respectively. The proposed method reduces power consump-
tion by 28 % and 26 % compared to without-control and DP
without GMM, respectively.

Case 2 The vehicle trajectories without control and
with the proposed method 1 (DP+GMM) are shown in Figs.
9(a) and 9(b), respectively. A comparison of the power con-
sumption of no-control and the proposed trajectory for start-
ing time is shown in Fig. 9(c). The expected power consump-
tion is 116.6 kJ for the no-control trajectory and 113.8 kJ for
the proposed method, thus the power consumption is reduced
by 2.4 %.

Case 3 Figs. 10(a) and 10(b) show the assumed pass
and stop trajectories, respectively. Without control, only the
pass trajectory is considered, but the proposed method allows
the stop trajectory to be considered. Fig. 10(c) shows the
power consumption at each starting time. When the starting
time is small, the pass trajectory consumes less energy. On
the other hand, when the starting time is large, sudden de-
celeration can be prevented and power consumption can be
reduced by the proposed stop trajectory.

Case 4 Figs. 11(a), 11(b), and 11(c) show the compar-
ison of the passing probability of the second signal and power
consumption when the distance between signals is 120, 420,
and 480 m, respectively. This case compares the energy esti-
mated by the proposed method 2 (E[Ĵexp] and Ĵstop) and that
obtained from the simulation for both the assumed stop and
pass trajectories. As the distance between signals increases,
the range of the passing probability where the power con-
sumption of the stop trajectory is smaller than that of the
pass trajectory becomes larger. Since the passing probabil-
ity is obtained from the GMM, the estimated value by the
proposed method matches the simulation value when a pass
is assumed, but when a stop is assumed, the passing prob-
ability cannot be obtained and the estimated result does not
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Fig. 8. Simulation result (Case 1).

0 20 40 60 80
0

50

100

150

200

250

300

(a) Vehicle trajectory without Control.

0 20 40 60 80 100
0

50

100

150

200

250

300

(b) Vehicle trajectory with DP+GMM.

0 5 10 15 20 25 30
100

105

110

115

120

125

130

135

(c) Energy consumption.

Fig. 9. Simulation result (Case 2).
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Fig. 10. Simulation result (Case 3).
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Fig. 11. Simulation result (Case 4).

match that of simulation at large passing probability.

Discussion When the vehicle stops at both adjacent
traffic signals, it is possible to design the speed trajectory so
that the vehicle reaches the next traffic signal when the signal
turns green, thereby greatly reducing power consumption.

The proposed method can reduce energy consumption
when the speed distributions are not separated. Although

there are cases in which the proposed method cannot reduce
power consumption depending on the starting time, the ex-
pected value of power consumption is reduced by the pro-
posed method, confirming the effectiveness of the proposed
method.

When the speed distributions are separated, the lower
power consumption speed trajectory depends on the start
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lation value, respectively.

time. Therefore, the applicability of the stop trajectory de-
pends on the passing probability. It is important to estimate
the expected power consumption by the proposed method to
properly select the pass or stop trajectory. Although there are
errors in the power consumption obtained by the simulation
and the proposed method, the error is small in the intermedi-
ate region of the passing probability where the energy of the
pass and stop trajectories is equal. Thus, the simulation con-
firmed that the proposed method can select the stop and pass
trajectory. The aforementioned results verify the effective-
ness of the proposed method in reducing energy consump-
tion by (i) taking into account the assumed stop trajectory;
(ii) selecting between the pass and stop trajectory.

4.3 Experimental Validation The speed trajectory
of Case 1 is given to the actual vehicle and the inverter input
power is measured. For each speed trajectory, the experiment
is performed five times. The measured power is compared
with the estimated power based on the inverter input power
model using measured wheel speed and both are shown in
Fig. 12.

The experimental values are in agreement with the power
model used in the simulation. Compared to total power con-
sumption, the difference between the actual and the calcu-
lated power is less than 6.6 %. The agreement between the
power consumption model and experimental results is con-
firmed and the simulation is validated.

5. Conclusion

This paper proposes a method for generating the speed tra-
jectory that minimizes the vehicle’s energy consumption be-
tween signals. By utilizing the floating car data, the proposed
method can be applied even when vehicle communication is
unavailable. A GMM was used to model the traffic flow re-
lationship between adjacent signals using floating car data,
and a method was proposed to determine the speed trajectory
by combining the estimated values with DP. Simulation and
experiment using a front-IWM-EV show that the method can
reduce power consumption as an expected value. The pro-
posed method can be straightforwardly extended to other EV
prototypes.

An initial proposal for utilizing floating car data to derive
the energy-optimized speed trajectory is presented. In the fu-
ture, we will investigate the constraints imposed by the vehi-

cles ahead, and the utilization of onboard vision information
for the extension of the proposed method in practical appli-
cations.
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