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Abstract—The cutting process with machine tools plays an
important role in the industry. Cutting force is a crucial factor
in monitoring the tool status, and thus its sensorless estimation is
gaining attention. The aim of this study is to develop a practical
cutting force estimation. In this study, the encoder resolution is
focused on, and the effect of encoder resolution on cutting force
estimation is analyzed. Then, a cutting force estimation method
robust to the quantization of the encoder signal is proposed. The
experiments with an actual machine tool are performed, and the
effectiveness of the proposed approach is demonstrated.

Index Terms—Machine tool, cutting force estimation, two-
inertia system, disturbance observer.

I. INTRODUCTION

Automatic machining with machine tools is widely em-
ployed in the industry. Especially the cutting process plays
an important role. Because the accuracy of the cutting process
strongly influences product quality, the accuracy of the cutting
process is of great importance.

Tool wear and tool breakage are well-known causes of
machining errors. Therefore, a detection method for tool wear
and breakage is required. The cutting force, generated by
contacts between the tool and the workpiece, reflects the
tool condition [1], and thus it is a good index for tool
condition monitoring. A dynamometer can measure the cutting
force directly; however, some issues, e.g., high cost, sensor
placement, wiring, and measurement calibration, prevent its
industrial application, and its uses are limited to research.
Therefore, additional sensorless estimation methods of cutting
force have been studied actively.

Recently, linear scales (load-side encoders) that can di-
rectly measure the stage position of machine tools (load-side
position) have become popular for improving servo perfor-
mance. Accordingly, various effective utilization of the load-
side position has been studied, e.g. [2]. Sensorless cutting
force estimation methods using the stage position acquired
by the linear scale have been attracting attention [3], [4]. The
method is based on disturbance observer (DOB) [5], [6], and
an intuitive design is possible. Because of its simplicity, the
DOB-based method is used in a wide range of areas of force
estimation and control, e.g., [7], [8]. Our research group also
proposed a sensorless cutting force estimation method robust
to the mechanical parameter variation [9], [10].

However, few studies have verified cutting force estimation
with machine tools used in the actual industry. The aim of

Fig. 1. Experimental setup: CMX 1100V from DMG MORI CO., LTD.

this study is to analyze the cutting force estimation with an
actual machine tool and develop a practical estimation method.
Unlike machine tools for research objectives, the encoder
(rotary encoder and linear scale) resolution of machine tools in
the industry is still limited. First, the influence of the encoder
resolution on cutting force estimation is analyzed in this study.
The analysis reveals that the encoder resolution greatly influ-
ences cutting force estimation. Therefore, this study proposes a
fitting-based cutting force estimation. The proposed approach
is achieved by local curve-fitting of the encoder signals and the
moving horizon approach. The proposed approach is validated
through experiments with the actual machine tool.

The contributions of this study are as follows:
1) A cutting force estimation method is introduced and

analyzed regarding the encoder resolution. It turns out
that the quantization of the encoder signal has a large
negative impact on cutting force estimation.

2) To address the above issue, a fitting-based cutting force
estimation is proposed.

3) The proposed approach is validated through experiments
with an industrial machine tool.

The remainder of this paper is organized as follows. The ex-
perimental setup is introduced in Section II. Then, Section III
presents the conventional cutting force estimation. The method
is analyzed regarding the encoder resolution in Section IV.



Next, a cutting force estimation method by curve-fitting is pro-
posed in Section V. The proposed method is validated through
experiments in Section VI. Finally, Section VII concludes this
paper.

II. EXPERIMENTAL SETUP

This section introduces the experimental setup.

A. System Configuration

The experimental setup, CMX 1100V from DMG MORI
CO., LTD, is shown in Fig. 1. This setup is an industrial
vertical machining center.

In the experimental setup, a ball-screw-driven stage is used
as a feed system. The stage moves in two axes; x and y axis.
A rotary encoder is attached to the motor on each axis, and a
linear scale is attached to the stage. Full-closed control with
the linear scale for stage position control is implemented. In
this study, only the x axis motion is considered. Therefore,
only the x axis data are treated in the remainder of this paper.

When the cutting process is carried out, a workpiece and
dynamometer are fixed on the stage. The dynamometer (9255C
from Kistler) is used only to validate the cutting force estima-
tion. Furthermore, the tool is rotated by the spindle motor to
cut the workpiece.

B. Modeling

Because the ball-screw connects the motor and the stage,
the ball-screw-driven stage is often modeled as a two-inertia
system [11]. The block diagram of the system is illustrated in
Fig. 2.

The motor-side and stage-side equations of motion are given
by

Jmω̇m = Tm −Dmωm − Tnf −RFa, (1)
Mtv̇t = Fa − Ctvt − Fnf − Fcut, (2)

where ωm = θ̇m and vt = ẋt denote the motor angular velocity
and stage velocity, respectively. The axial force of ball-screw
denoted as Fa is derived by

Fa = K(Rθm − xt). (3)

Here, the symbols in (1), (2), and (3) are as follows. Jm is
a motor inertia, and Dm is a motor-side viscosity coefficient.
K is a ball-screw stiffness, and R is a ball-screw rotation-to-
translation ratio. Mt is a stage mass, and Ct is a stage-side
viscosity coefficient. Tm is a motor torque, and Tnf is a motor-
side nonlinear friction. Fcut is a cutting force, and Fnf is a
stage-side nonlinear friction.

From (1), (2), and (3), the transfer function from motor
torque Tm to motor angle θm is derived as (4).

A stepped-sine torque is applied to the motor for system
identification, and the motor angle is measured. The result
of system identification is shown in Fig. 3. Based on the
frequency response data shown in Fig. 3 and the model (4), the
mechanical parameters are identified. The identification results
are summarized in Table I. Note that there is a mismatch
between the frequency response data and its model around

TABLE I
PARAMETERS OF EXPERIMENTAL SETUP.

Symbol Description Value
Jm motor inertia 4.06× 10−3 kgm2

Dm motor-side viscosity coefficient 7.61× 10−3 Nms/rad
K ball-screw stiffness 1.03× 108 N/m
R ball-screw rotation-to-translation ratio 1.91× 10−3 m/rad
Mt stage mass 2.60× 102 kg
Ct stage-side viscosity coefficient 1.53× 103 Ns/m

the resonance frequency (around 100Hz). This is because the
motor-side and stage-side viscosity coefficients are identified
by the constant velocity drive experiments of the stage.

III. CUTTING FORCE ESTIMATION

In this section, the DOB-based cutting force estimation
method is presented. First, the axial force is estimated based
on the motor-side DOB. Then, the stage-side DOB estimates
the cutting force. The block diagram is depicted in Fig. 4 [12].

From Fig. 2, the axial force estimate F̂a is given from the
motor-side DOB by

QF̂a =
1

R

{
Q(Tm − Tnf)−Q

(
Jms

2 +Dms
)
θm

}
. (5)

Here, Q is a second-order low-pass filter (LPF) which makes
Q
(
Jms

2 +Dms
)

proper.
Then, the cutting force estimate F̂cut is derived from the

stage-side DOB as

F̂cut = Q
(
F̂a − Fnf

)
−Q

(
Mts

2 + Cts
)
xt. (6)

From (5) and (6), the cutting force estimate F̂cut is given by

F̂cut =
Q

R
Tm − Q

R

(
Jms

2 +Dms
)
θm

−Q
(
Mts

2 + Cts
)
xt −Q

(
Tnf

R
+ Fnf

)
(7)

In this section, the DOB-based cutting force estimation
method is introduced based on the block diagram and the
transfer function. The method can also be derived from the
state-space representation and the state observer; see [9].

IV. ENCODER RESOLUTION ANALYSIS FOR CUTTING
FORCE ESTIMATION

In this section, the effect of the quantization error on cutting
force estimation is analyzed based on the discrete Lyapunov
equation [13].

When the encoder’s resolution is denoted as q, the quanti-
zation error of the encode signal, ξ, has a uniform distribution
whose probability density function f(ξ) is given by

f(ξ) =


1

q

(
−q

2
≤ ξ ≤ q

2

)
0 (otherwise)

. (8)
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Fig. 2. Block diagram of a two-inertia system.
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Fig. 3. Frequency response data from motor torque to motor angle of
experimental setup. The model includes the time delay.

The average value and variance of the quantization error are
given by

E{ξ} = 0, (9)

E
{
ξ2
}
=

∫ q/2

−q/2

1

q
ξ2 dξ =

q2

12
, (10)

where E{•} denotes the average value of •. Furthermore, the
cross-correlation function of the quantization error is given by

E{ξ(t1)ξ(t2)} = 0 (t1 ̸= t2). (11)

Here, a linear discrete-time single-input single-output sys-
tem G is considered, which is driven by the quantization error
and given by

x[k + 1] = Ax[k] + bξ[k], y[k] = cx[k] + dξ[k]. (12)

According to (9)–(12), the output variance is derived as

E
{
y2[k]

}
= cE

{
x[k]x⊤[k]

}
c⊤ + d2E

{
ξ2[k]

}
. (13)
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Fig. 4. Block diagram of cutting force estimation.

From (12), the following equations hold in the steady-state:

X = AXA⊤ + E
{
ξ2
}
bb⊤, X = E

{
xx⊤}. (14)

Thus, the output variance due to the quantization error is
calculated as (13) from the solution of (14).

Based on (7) and (13), the effect of the quantization error on
cutting force estimation is analyzed. Fig. 5 shows the cutting
force estimation variance as functions of the resolutions of
the rotary encoder and linear scale. The cutoff frequencies
of the LPF Q used in the estimation is 150Hz, 300Hz, and
450Hz. Moreover, the dashed lines denote the resolutions of
the encoders of the experimental setup shown in Fig. 1. The
sampling frequency of the estimation is 1ms.

Fig. 5 indicates that the current encoder resolutions of
this experimental setup cause the large estimation variance.
Furthermore, the estimation variance becomes more significant
when the cutoff frequency of the LPF Q is increased for
high bandwidth cutting force estimation. From the above
discussion, it is difficult to directly apply the approach (7) to
cutting force estimation due to the current encoder resolution.
In the next section, the solution to this problem is presented.

V. PROPOSED FITTING-BASED CUTTING FORCE
ESTIMATION

The problem in cutting force estimation is that the quan-
tization error of the encoder signal is amplified by DOB. In
this study, therefore, the effect of the quantization error is
reduced by estimating the true value from the quantized signal.
This is achieved by local curve-fitting of the quantized signal
and the moving horizon approach. Then, the cutting force is
estimated with the fitted encoder signals. The block diagram
of the proposed cutting force estimation is presented in Fig. 6.

A. Local Curve-fitting and Selection of Basis Function

First, the encoder signals are curve-fitted to estimate the
true values. Basis functions for fitting 2N +1 quantized local
data {yq[i]}i=k−N,...,k,...,k+N is considered. Here,

yq[i] = y[i] + ξ[i], y ∈ {θm, xt} (15)



10
-6

10
-5

10
-4

10
-3

10
-5

10
0

10
5

10
10

(a) Rotary encoder.

10
-9

10
-8

10
-7

10
-6

10
-5

10
-5

10
0

10
5

(b) Linear scale.

Fig. 5. Effect of quantization error on cutting force estimation.
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Fig. 6. Block diagram of the proposed cutting force estimation.

holds where yq is a quantized signal, and y is a true signal. In
addition, i denotes the time index, and k denotes the current
time index with the sampling period Ts. The quantized local
data are fitted with the basis functions and parameters as
follows:

f(t) = ψ(t)θ, (16)

where f(t), ψ, and θ are the fitted curve, basis functions, and
parameters, respectively.

The selection of the basis functions is a key issue. While a
polynomial is sometimes used for curve-fitting of quantized
data [14], this study employs other basis functions. The
cutting force mainly consists of frequency components integer
multiples of the spindle rotation speed, and the encoder signals
are affected by the cutting force. Furthermore, the cutting
process is done when the stage moves at a constant velocity in
this study. Therefore, the basis functions and parameters are
selected as follows in this study:

f(t) = a0 + a1t+

Nmax∑
i=1

(asi sin(iωst) + aci cos(iωst)), (17)

ψ(t) =
[
1 t sin(ωst) · · · cos(Nmaxωst)

]
, (18)

θ =
[
a0 a1 as1 · · · acNmax

]⊤
, (19)

with the spindle rotation speed ωs and the maximum order of
curve-fitting Nmax. Based on the above discussion, the local
curve-fitting problem is formulated as follows:

θk = arg min||βk − Ψkθ||22, (20)

βk =
[
yq[k −N ] · · · yq[k] · · · yq[k +N ]

]⊤
, (21)

Ψk =
[
ψ[k −N ] · · · ψ[k] · · · ψ[k +N ]

]⊤
. (22)

Here, 2Nmax + 2 < 2N + 1 is assumed.
The optimization problem (20) is solved by the least-square

method and has a unique solution

θk =
(
Ψ⊤

k Ψk

)−1
Ψ⊤

k βk (23)

when
(
Ψ⊤

k Ψk

)−1
exists.

B. Moving Horizon Approach

Once (20) is solved, the fitted curve is calculated as

fk(t) = ψ(t)θk. (24)

Therefore, the estimated true value y[k] is given by

y[k] = fk(kTs). (25)

Next, the time index is updated from k to k + 1. Then,
the same operation is repeated. In other words, θk+1 is
solved as (20) with the one-sample updated quantized local
data {yq[i]}i=k−N+1,...,k+1,...,k+N+1. The estimated value is
calculated as (20).

This moving horizon approach is illustrated in Fig. 7.

C. Cutting Force Estimation with Fitted Data

The cutting force is estimated with the estimated true values
θm and xt as follows:

F̂cut =
Q

R
Tm − Q

R

(
Jms

2 +Dms
)
θm

−Q
(
Mts

2 + Cts
)
xt −Q

(
Tnf

R
+ Fnf

)
(26)

The block diagram is shown in Fig. 6.
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Fig. 8. Measured cutting force in experiment.

VI. VALIDATION

In this section, the proposed approach presented in Sec-
tion V is validated through the experiments with the setup
shown in Fig. 1.

A. Experimental Condition

The experiment for cutting force estimation is described.
First, the stage moves in the negative direction, and the cutting
process is carried out when the stage velocity is constant. The
stage velocity is set as 140mm/s, and the spindle rotation
speed is set as 1300 rpm (ωs = 2π · 21.7 rad/s). Then, the
stage stops. Next, the stage moves in the positive direction, and
the cutting process is done similarly when the stage velocity is
constant. Finally, the stage stops, and the experiment finishes.

The measured cutting force is illustrated in Fig. 8. Fig. 8(a)
shows the time-domain data. The result of frequency-domain
analysis of a part of time-domain data is shown in Fig. 8(b).
It is observed that the cutting force has large components at
integer multiples of the spindle rotation speed.

B. Estimation Result

Fig. 9 shows the cutting force estimation result. The legend
“conv.” denotes the cutting force estimation (7) without curve-
fitting, while the legend “prop.” denotes the cutting force
estimation (26) with curve-fitting. Here, the LPF Q used in the

cutting force estimation is a second-order filter whose cutoff
frequency is 150Hz. Furthermore, Nmax used in the proposed
approach is 4 because the number of blades of the tool used
in the experiment is four. N is set as 10.

From Fig. 9(a) and Fig. 9(c), it is clear that the estimation
noise is reduced by signal curve-fitting. In the frequency
domain shown in Fig. 9(b) and Fig. 9(d), the estimation
noise in the high-frequency range decreases. As a result, the
estimation result becomes close to the measurement result
by introducing curve-fitting. Therefore, the effectiveness of
the proposed approach is verified. Note that the comparison
between the measured and estimated instantaneous values
shown in Fig. 8 and Fig. 9 does not make sense because the
measurement of cutting force by the dynamometer and the
measurement of servo data (e.g., motor torque) by the servo
amplifier is not synchronized.

VII. CONCLUSION

In this study, a fitting-based cutting force estimation is
proposed to address the issue caused by the quantization
of the encoder signals. In the proposed approach, the true
values of the encoder signals are estimated from the quantized
signals by curve-fitting. The experiment is performed, and the
effectiveness of the proposed approach is demonstrated.
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Fig. 9. Estimated cutting force in experiment.
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