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Abstract - To properly design the motion controller for 
multirotor, it is essential to address the propeller dynamics and 
their physical interaction. However, the complexity of system 
design increases together with the number of propellers. 
Considering this issue, this paper investigates the landing speed 
control system of the quadrotor as a case of study. The system 
consists of a vertical speed controller, and three roll-rate, pitch-
rate, and yaw-rate controllers. We show that the system can be 
effectively modelled based on the concept of generalized frequency 
variable. This model allows the system stability to be analyzed via 
a simple inequality test or a graphical test, thereby, alleviating the 
design burden. The effectiveness of the proposed approach is 
demonstrated using a real quadrotor model. 

Keywords - generalized frequency variable, motion control, 
multi-agent system, propeller, quadrotor, stability analysis. 

I. INTRODUCTION 

Multirotor has been expected to be widely utilized due to its 
unique qualities, such as vertical takeoff and landing, hovering, 
and structural simplicity [1]. Consequently, motion control of 
multirotor has seen great growth since the last decade. Various 
methods have been proposed to improve the position and 
attitude tracking under the influences of model uncertainty, load 
variation, disturbance from the environment, and the faults of 
sensors and/or actuators [2] – [12]. 

Unfortunately, the previous works [1] – [12] treated the 
multirotor as a point mass moving in three-dimensional 
Euclidean space. However, the global motion of the multirotor 
is generated by the physical interaction between the propellers. 
Transparently, the multirotor should be treated as a multi-agent-
system (MAS), in which each local agent is a propeller actuator. 
By both theoretical analysis and experiments, [13] recently 
showed that the local propellers and their interaction must be 
addressed properly to stabilize the overall multirotor system. 
Certainly, the complexity level of system design increases 
together with the number of the actuators. To deal with this issue, 
[13] showed that the absolute-stability of the altitude control 
system can be analyzed via a feedback connection of a transfer 
function and the sector-bounded nonlinear thrust model. In [13], 
the absolute stability is verified graphically using the Circle 
Popov criterion [14]. However, this approach is inconvenient for 
an integrated motion control system, which also considers the 
roll, pitch, and yaw motion controllers. The reason is due to the 
fact that the Circle Popov criterion of the integrated motion 
control system is graphically unavailable. Thus, the following 
question is still an open challenge: For the sake of practical 
application, how should we model and analyze the integrated 
motion control system of multirotor? 

This paper considers the quadrotor, which is the most basic 
multirotor prototype. To guarantee the safe and stable landing 
motion, this paper investigates an integrated control system 
consisting of a vertical speed controller, and three roll-, pitch-, 
and yaw-rate controllers. Although the system is quite complex, 
it can be modelled as an MAS with the concept of generalized 
frequency variable (GFV) [15]. Consequently, the system 
stability is discussable from: (i) the GFV transfer function; (ii) 
the set of eigenvalues of the MAS’s interconnection matrix. This 
approach is systematical, and can be extended to the other 
multirotor prototypes. Moreover, this model allows us an 
inequality test and a graphical test of system stabilization. The 
tests are very simple, thereby, alleviating the design burden. 

The rest of this paper is organized as follows. Section II 
describes the landing control system with respect to the 
existence of the actuators. Section III presents the problem 
setting and the GFV approach. The effectiveness of the proposal 
is demonstrated using a real quadrotor in Section IV. Finally, the 
conclusions and future works are stated in Section V. 

II. MODELING 

This paper examines the quadrotor model with the rotor 
ordering shown in Fig. 1. 𝐹௜  is the thrust, and 𝜔௜ is the rotational 
speed of the propeller number 𝑖. 𝐹௭ is the total thrust acting at 
the center of gravity. The total mass of the quadrotor is 𝑚, and 
𝑔 is the acceleration of gravity. Let f, 𝜃, and 𝛾 be the roll, pitch, 
and yaw angle of the quadrotor; and let 𝐽௫(௬,௭) be the quadrotor’s 
moment of inertia along 𝑥 (𝑦, 𝑧) axis of the body-fixed frame. 
The roll and pitch moment arms are denoted and 𝐿f  and 𝐿ఏ , 
respectively. The relationship between 𝐹௜  and 𝜔௜  is 
characterized by a nonlinear map Y, as shown in Fig. 2. This 
map is commonly approximated as a polynomial based on 
experimental data. The landing control system is generally 
expressed as in Fig. 3 with a hierarchical configuration. 
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Fig. 1. Quadrotor model with rotor ordering. 
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A. Lower-layer: Local actuator dynamics 

 Let 𝜌௜ be the pulse width modulation (PWM) command and  
𝑉௜  be the voltage applied to motor 𝑖. We have 𝑉௜ = 𝜌௜𝑉௕ . The 
voltage 𝑉௕ of the battery is an decreasing function of the state of 
charge (SOC). The transfer function from 𝑉௜ to 𝜔௜ is 

 
1

m
m

m

K
P s

T s



 ............................................................... (1) 

where the gain 𝐾௠ and the time constant 𝑇௠ are derived from 
the motor-propeller parameters. 𝐈ସ is the identity matrix of size 
4, which is used to express the multi-actuator dynamics in the 
lower-layer. Besides, the column vectors 𝛒, 𝐕, 𝛚 and 𝐅 include 
𝜌௜, 𝑉௜, 𝜔௜ and 𝐹௜ , respectively. 

B. Middle-layer: Interaction 

In Fig. 3, the force-torque vector U is defined as 

T

       U zF  ....................................................... (2) 

where 𝜏f , 𝜏ఏ , and 𝜏ఊ  are the roll-, pitch-, and yaw-moment 
acting on the center of gravity (COG) of the quadrotor. 𝐔 is 
aggregated from 𝐅 via the aggregation matrix 
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where 𝐾ఊ is the yaw moment constant. The command vector 𝐔∗ 
is distributed to 𝛒 via the distribution matrix 
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where 𝐾௙  is the linearized gain from the PWM command to the 
thrust force. 

C. Upper-layer: Global quadrotor dynamics 

For the safe and stable landing purpose, the output vector and 
its reference vector can be selected as 

ΤT
,       

          Y Yz zv v v v v v v v  ..................... (5) 

From [1], the global dynamics of the quadrotor is given as 

 ,  cos cos

,  

,  

,  


  


  


  

 


 

 


 

    


    

     



    



  

 

  

z
z z z

y z

x x

z x

y y

x y

z z

F
z v v g d

m
J J

v v d
J J

J J
v v d

J J

J J
v v d

J J

 ............................. (6) 

where 𝑑௭,f,ఏ,ఊ are the external disturbances to the quadrotor. The 
tracking error vector 𝐄 = 𝐘∗ − 𝐘 is the input of the controller 
which generates the command vector 𝐔∗. 

III. GFV APPROACH 

A. Problem setting 

As presented in [13] and [16], the control system of the 
quadrotor might include the disturbance observer for improving 
the robustness, the state observer for estimating the unknown 
variables, and the Kalman filter for compensating the sensor 
delay. The aforementioned controllers are not considered in this 
paper. This paper provides a different approach by only focusing 
on landing speed control. To this end, we apply GFV method 
based on a linearized model around an equilibrium speed of the 
propeller, and investigate the stability. We make the following 
assumptions. 

Assumption 1: The quadrotor is assumed to be close to the 
vertical motion, so that 𝐹௭ ≈ 𝑚𝑔. It is also assumed that the roll 
and pitch motions are slight that sinf ≈ f and sin𝜃 ≈ 𝜃. 

Assumption 2: Good measurements of the quadrotor speed 
and roll-, pitch-, yaw-rate are available. 

We can omit the position variables and the Euler angles in 
(6), since we only consider the controls of vertical speed and 
Euler angles’ rates in this paper. Then, under Assumption 1, the 
dynamical model (6) can be linearized as follows 
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Fig. 2. Thrust characteristic. 
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Fig. 3. Block diagram of the quadrotor’s landing control system. 
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It can be derived from Assumption 1 that the quadrotor 
always operates in a certain region of the thrust characteristics 
in Fig. 2. Focusing on this region, the relationship between the 
thrust force and the propeller speed can be linearized as 

i iF   .......................................................................... (8) 

Notice 1: The above linearization is reasonable as seen in 
Fig. 7, which shows the thrust characteristic obtained from the 
experimental results of our quadrotor system. 

As mentioned above, this paper considers the controller as 

 ( ), ( ), ( ), ( )  zdiag C s C s C s C s  .................................... (9) 

where 𝐶௭(𝑠) is the vertical speed controller, and 𝐶f,ఏ,ఊ  are the 
roll-, pitch-, yaw-rate controllers. The dynamics of the vertical 
speed, roll-rate, pitch-rate, and yaw-rate has a common term of 
1 𝑠⁄ . Hence, the four controllers in (9) can be selected as 

 # #( ) ( ),  ,  ,  ,  #    oC s C s z  ............................... (10) 

where 𝐶௢(𝑠) is the common controller, and 𝛼# is a positive gain 
to be selected for each control channel. In summary, the block 
diagram of the upper-layer can be described as in Fig. 4 where 

Τ
( )      ξ z x y zm g d J d J d J d  .............................. (11) 

B. Stability analysis 

The landing control system is equivalently expressed as an 
MAS in Fig. 5, where each local agent is an actuator sub system. 
The equivalent vector and matrices are defined as 

Τ

     ξ zg d d d d  ............................................... (12) 

1 1 1 1
Λ , , , Λ
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  


x y z

diag
m J J J

 ........................................ (13) 

 Γ Γ , , ,     
zdiag  ............................................. (14) 

Reorganizing Fig. 5, the system stability can be analyzed 
from the interconnection system in Fig. 6 where 

 ( ) ( )b
o m

V
H s C s P s

s


  ................................................ (15) 

ΛΓQ     ...................................................................... (16) 

where 𝑄 represents the interaction between the local agent. The 
total system stability can be analyzed from the transfer function 

1

4

1
( )=

( )
G s Q

H s


 

 
 

I  .................................................. (17) 

Now, define the transfer function 

  1

4( )=L s s Q
I  ............................................................ (18) 

Replacing “𝑠” in 𝐿(𝑠) with Φ(𝑠) ≔ 1/𝐻(𝑠), we will have 
𝐺(s) = 𝐿(Φ(𝑠)). Therefore, we can say that the system shown 
in Fig. 6 has the generalized frequency variable (GFV) Φ(𝑠). 
We define the complex plane and the closed right-half plane as 
C  and C+, respectively. Hence, we can analyze system stability 
by defining the following domains 

 Ω : Φ ,  Ω \ Ω    cC C  ............................................ (19) 

Applying Theorem 1 in [15], we have 

General stability condition: Under the Assumptions 1 and 
2 and the problem setting presented in the previous sub-section, 
the landing control system is said to be stable if we can design 
𝐶௢(𝑠) and a set of positive scalars 𝛼ஷ(≠∈ {𝑧,f, 𝜃, 𝛾}) such that 
all the eigenvalues of matrix 𝑄 are located in Wା

௖ . 

From (13), (14) and (16), it can be derived that 
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z

f x f y f z f
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 ...................... (20) 

Hence, the eigenvalues l௜  (𝑖 ∈ {1, 2, 3, 4}) of matrix 𝑄 are 
given by the diagonal elements shown in (20). 

C. Stability test: PI controller case 

It should be emphasized that the advantage of the GFV 
approach is that the order of the system for the stability check is 
that of 𝐻(𝑠), which is four times smaller than that of the whole 
system. This makes the stability test very simpler. To 
demonstrate this, we here consider the case of proportional-
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Fig. 4. Block diagram of the upper-layer. 
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Fig. 6. Representation of landing speed control system as a MAS. 
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integral (PI) type controller. Without loss of generality, the 
common controller 𝐶௢(𝑠) can be expressed as: 

( )


o

s
C s

s
 ............................................................... (21) 

Substituting (21) into (15), the GFV can be derived as 

3 21 ( )
Φ( )

( ) ( )

  
  


s cs ds e l s

s
H s as b n s

 ....................... (22) 

where 

1
, , , 0

  
    b m b m

m m m

V K V K
a b c d e

T T T
 ................. (23) 

Let l = 𝑥 + 𝑗𝑦 where j is the imaginary unit, we define 

     3 2
1 1 2 2 3 3

( , ) ( ) ( )

           

  

      

pl s l s n s

s p jq s p jq s p jq
 (24) 

where 
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2 2

3 3
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p e bx q by

 
    
    

 ................................................ (25) 

Following Theorem 1 in [15], the stable region Wା
௖  is defined 

by a set of inequalities {𝐷௜(𝑥, 𝑦) > 0, 𝑖 = 1,2,3} where 

1 3 2

1 3 2 2 1 3

1 1 2 2 1 3 1 3 2

2 1 2 1 3

1 3 2

0 0

1 0

,  det 1 ,  det 0 0

0 0 0

0 1


  
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p p q

p p q p q q

D p D p q D p p q

q p q p p

q q p

 

Remark 1: 𝑄  is a diagonal matrix with real negative 
eigenvalues l௜. Hence, the stability condition can be checked via 
the stability of four feedback connections of 𝐻(𝑠) and l௜ . With 
respect to the GFV (22), the control system is stable if the 
following third-order polynomial has all roots in the open left 
half plane for all 𝑖 from 1 to 4: 𝑝𝑙(𝑠) = 𝑠ଷ + 𝑐𝑠ଶ − l௜𝑎𝑠 − l௜𝑏. 
Following the Routh-Hurwitz criterion, it is required that 

 
   

0,  0,  0 1,2,3,4 

 

       


  

i i

i i

c a b i

c a b
 ................. (26) 

From (23) and (26), the stability condition of the overall 
system is finally obtained as 

 
1 
mT

 ......................................................................... (27) 

IV. DEMONSTRATION 

A. Quadrotor model 

To demonstrate the above approach, this study utilizes the 
quadrotor which has been used recently in [13] and [16]. The 
main parameters of the quadrotor are summarized in TABLE I, 
and the nonlinear thrust model is shown in Fig. 7. Considering 
the operating points about the propeller speed of 12,000 [rpm], 
the linearized gain in (8) can be approximately calculated as 𝜅 ≈
2.83 × 10ିସ[𝑁/𝑟𝑝𝑚]. 

B. Test results and discussion 

Let the transfer function of the common plant be  

1
( ) oP s

s
 ....................................................................... (28) 

Considering the quadrotor body dynamics (7), the transfer 
function of the vertical speed, roll-rate, pitch-rate, and yaw-rate 
are expressed as 

( ) ( ) ( ) ( )
( ) , ( ) , ( ) , ( )     o o o o

z
x y z

P s P s P s P s
P s P s P s P s

m J J J
(29) 

It should be emphasized that the derived stability condition 
(27) is essential to decide the ratio of PI gains to guarantee the 
stability of the multirotor. (27) requires the ratio 𝜎 to be bounded 
by 1 𝑇௠⁄ . This means that the neglect of the actuator dynamics, 
i.e., assuming 𝑇௠ = 0, as done in the traditional approach may 
cause a trouble of losing the stability. In other words,  designed 
controller by neglecting the actuator dynamics which stabilizes 
𝑃௢(𝑠) may not stabilize 𝑃௢(𝑠)𝑃௠(𝑠) if 𝜎 is really large. We now 
consider the following test confirm this. 

The quadrotor is landing from the altitude of 2 [m]. The 
reference landing speed is set to −0.1 [𝑚 𝑠⁄ ], and the roll-rate, 
pitch-rate, yaw-rate are required to be maintained at 0 [𝑟𝑎𝑑 𝑠⁄ ]. 
Two cases were conducted as follows. 

Case A: The integral gain of the common controller is 
selected as 𝜎 = 338.5 . The scale parameters are selected as 
൛𝛼௭,f,ఏ,ఊൟ = ൛10𝑚, 14𝐽௫ , 13𝐽௬ , 15𝐽௭ൟ. With this selection of the 
controller, matrix 𝑄  has four real eigenvalues of 
{−1.96, −2.34, −2.54, −2.94} . It is easily to verify that the 
closed loop system {𝐶௢(𝑠), 𝑃௢(𝑠)} is stable with this selection. 
Unfortunately, the overall system is unstable since the inequality 
(27) is not satisfied 

TABLE I. PHYSICAL PARAMETERS OF THE QUADROTOR 

Total mass 𝑚 =  1.12 [kg] 

Roll moment of inertia 𝐽௫ = 1.0 × 10ିଶ[𝑘𝑔𝑚ଶ] 

Pitch moment of inertia 𝐽௬ = 8.2 × 10ିଷ[𝑘𝑔𝑚ଶ] 

Yaw moment of inertia 𝐽௭ = 1.48 × 10ିଶ[𝑘𝑔𝑚ଶ] 

Pitch & roll moment arms 𝐿f = 0.21[m], 𝐿ఏ = 0.18[𝑚] 

Yaw moment constant 𝐾ఊ = 0.0492[𝑁𝑚] 

Battery voltage (fully charged) 𝑉௕ = 11.7[𝑉] 
Motor’s amplifying gain 𝐾௠ = 2100[𝑟𝑝𝑚/𝑉] 

Motor’s time constant 𝑇௠ = 0.004[𝑠] 

 

 
Fig. 7. Thrust characteristic of the quadrotor under study. 
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1

338.5 250.0  
mT

 .............................................. (29) 

The stable region in this test is reduced to a single point (the 
origin), as shown in Fig. 8(a). In other words, all the eigenvalues 
of matrix 𝑄 are not located in the stable region. As can be seen 
from Fig. 8(b), the altitude of the quadrotor experiences a large 

fluctuation, which means the quadrotor hits the ground seriously. 
As shown in Fig. 8(c), the vertical speed is unstable and cannot 
follow the reference values. Also, Fig. 8(d) shows that the rates 
of all Euler angles (roll-rate, pitch-rate, and yaw-rate) reach 
really large values. In summary, the quadrotor really suffers an 
accident, and it cannot land safely. 

 
(a) Graphical test 

 
(b) Altitude 

 
(c) Vertical speed 

 
(d) Rates of Euler angles 

Fig. 8. Case A (unstable example). 

 
(a) Graphical test 

 
(b) Altitude 

 
(c) Vertical speed 

 
(d) Rates of Euler angles 

Fig. 9. Case B (stable example). 
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Case B: The integral gain of the common controller is 
selected as 𝜎 = 3.33. Similarly to the previous test, the scale 
parameters are selected as ൛𝛼௭,f,ఏ,ఊൟ = ൛10𝑚, 12𝐽௫, 13𝐽௬ , 15𝐽௭ൟ. 
These parameters are selected via a tuning process such that the 
control performance is fairly acceptable.  Now, it can be verified 
that the inequality (27) is satisfied 

 
1

3.33 250.0  
mT

 ................................................. (30) 

As shown in Fig. 9(a), all the eigenvalues of matrix 𝑄 are 
located in the stable region. We can conclude that the quadrotor 
control system is stable in this test case. As shown in Fig. 9(b), 
the altitude of the quadrotor is gradually reduced to zero. The 
vertical speed can quickly match with the reference values, as 
can be seen from Fig. 9(c). Also, Fig. 9(d) shows that all the roll-
rate, pitch-rate, and yaw-rate are maintained around zero. 
Although the desired speed is −0.1 [𝑚/𝑠], the landing time is 
about 16 seconds, due to a peak of the quadrotor’s speed at the 
beginning. To improve the speed tracking performance, a robust 
controller, such as PI controller with disturbance observer can 
be considered in future. 

In summary, the inequality test (27) and the graphical test 
give the same conclusion on system stability. The test conveys 
a glocal meaning in the following sense. The parameter 𝑇௠ 
belongs to the local actuator. On the other hand, 𝜎 belongs to the 
setting of the global motion controllers, which should be limited 
by the capacity of the local actuator. For install,  small 𝑇௠ means 
the motor drive is fast and has enough bandwidth. Consequently, 
we will have more freedom to select the global controller. 

Remark 2: Actually, the uncertainties exist due to several 
reasons. For instance, the model parameters in the distribution 

matrix Γ are not necessarily similar to the physical parameters 
of the aggregation matrix Λ. On the other hand, the variation of 
the operating point in Fig. 7 is worth examined. Fortunately, 
matrix 𝑄 can be shown to be diagonal. Hence, we might utilize 
a recent result on robust stability analysis [17] without special 
difficulty. Together with the inequality (27), such analysis will 
give additional constraints of the control parameters. 

Remark 3: If the quadrotor speed is not measurable, it can 
be estimated using on-board sensors. If the sensor delays exist, 
they can be compensated using Kalman filter [16] or [18]. 

V. CONCLUSIONS 

This paper explains why the multirotor motion control 
system must be treated as a multi-agent system with physical 
interaction for properly guaranteeing system stability. As a case 
of study, this paper shows that the landing control system of the 
quadrotor can be effectively modelled with generalized 
frequency variable. This modelling allows us to check system 
stability via a simple inequality test or a graphical test. It is 
interesting that the tests’ complexity levels does not rely on the 
number of propellers. By demonstration using a real quadrotor 
model, the proposed approach is shown to be a promising tool 
for practical application. In the future steps, we will evaluate the 
proposed approach by both numerical simulation and 
experimental tests. We will also utilize the proposed approach 
to design advanced algorithms, such as disturbance observer and 
fault tolerance control with robust stability analysis. 
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