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A torque vectoring differential (TVD) enhances the cornering performance by generating a torque difference between
the left and right wheels. For electrified vehicles, a TVD with a two-motor-torque difference amplification mechanism
(TDA-TVD) is proposed, and it generates a greater torque difference than an Individual-wheel-drive (IWD) system
under the same power output from the traction motors. However, owing to the complex gear reduction system includ-
ing planetary gears and driveshafts, TDA-TVD has problems with the vibration of both the driveshaft torque and the
yaw rate while cornering. To deal with these problems, a detailed dynamic model of TDA-TVD is first derived in this
study. Secondly, a decoupling compensator is designed to achieve independent drive for the left and right wheels so
that any motor drive algorithm designed for IWD systems can be applied. Thirdly, a vibration suppression controller is
designed. Then, simulations and experimental evaluations using a real vehicle with the TDA-TVD are performed. The
experimental results show the effectiveness of the vibration suppression of driveshafts and yaw rate.

Keywords: Electric Vehicle, Motor Drive System, Two-Input-Two-Output System, Vibration Suppression, Decoupling Compensa-
tion, Torque Vectoring Differential

Nomenclature

M Vehicle mass
r Effective wheel radius

Jω Wheel inertia
Jm Motor inertia
Jall Nominal wheel inertia
G Primary reduction gear ratio

b1, b2 Equivalent secondary reduction gear ratio
Ks Stiffness of driveshaft
Ds Damping factor of driveshaft

TRM , TLM Input motor torque (R: right side, L: left side)
TRDm, TLDm Input motor torque after primary gear reduction

TRm, TLm Transmitted motor torque to planetary gears
TRIm, TLIm Motor inertia torque
TRin, TLin Input motor torque converted to driveshaft side
TRds, TLds Driveshaft torque after secondary gear reduction
ωRM , ωLM Motor side angular speed before primary gear reduction
ωRm, ωLm Motor side angular speed after primary gear reduction
ωRds, ωLds Driveshaft side angular speed after secondary gear reduction
λ slip ratio
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1. Introduction

A torque vectoring differential (TVD) is a device that con-
trols direct yaw moment by generating a torque difference
between the left and right wheels. TVD has the advantage of
improving the cornering performance by actively controlling
the yaw moment [1] [2] [3].

For that reason, some electric vehicles adopt individual-
wheel-drive (IWD) systems (either with on-board or in wheel
motor, as seen in Fig. 1(a)) and a lot of torque vectoring or
distribution algorithms have been studied [4] [5] [6]. How-
ever, the maximum available torque difference and direct yaw
moment decrease when the vehicle is at high speed, and
the same problem occurs when the vehicle is cornering near
the critical region, due to the decreased traction of the inner
wheels caused by the load transfer.

A TVD with a two-motor-torque difference amplifica-
tion mechanism (TDA-TVD) has been proposed in order to
increase the maximum available torque difference [7] [8].
TDA-TVD drives two wheels with two motors, but unlike
conventional IWD vehicles, there is a mechanical coupling
between the left and right wheels as seen in Fig. 1(b). There-
fore, TDA-TVD is categorized as a two-input-two-output
drive system. Thanks to the mechanical coupling, TDA-TVD
can generates greater torque differences between the left and
right wheels compared to the IWD system with the same
electric traction motor (i.e., torque difference amplitude fac-
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(b) Two-motor-torque difference amplification TVD system (TDA-TVD).

Figure 1: Torque vectoring differentials. TDA-TVD can gen-
erate greater torque difference ∆T than IWD system (Torque
difference amplification factor KT > 1).

tor KT > 1 in Fig. 1) and overall cornering maneuverabil-
ity. However, while TDA-TVD has the same advantages as
the TVD, it has relatively complex mechanical components,
including planetary gears, reduction gears, and driveshafts.
This leads to undesirable vibrations of the driveshaft torque
on the wheels and yaw rate vibration while cornering with its
torque vectoring system in function. The previous study [7]
[8] did not derive the dynamic model of TDA-TVD that de-
scribes its anticipated vibrations of the driveshaft torque and
yaw motion.These problems limit the performance of TDA-
TVD and must be solved in order to achieve its full potential.

Vibration suppression in vehicles has been widely studied
for a long time because they have a lot of vibrating com-
ponents such as internal combustion engines, transmissions,
driveshafts, and tires. In the case of EVs, even though their
driveline tends to be simpler than internal combustion engine
vehicles (ICVs), the relatively fast torque response of elec-
tric motors can create uncomfortable shaking vibration orig-
inating from the driveshafts when referring to on-board EVs.
In order to deal with these problems, various anti-jerk con-
trollers have been studied and proposed [9] [10] [11]. Each
study basically constructs a certain dynamic model of the
driveline of the target EVs and implements either or both a
feedback and a feedforward controller. A majority of these
studies consider EVs with a single-input-single-output drive
system (e.g., a single on-board motor drives the two front or
rear wheels, or single on-board or in-wheel motor drives the
left or right wheel individually). Therefore, these studies can-
not be directly applied to TDA-TVD due to the difference in
the mechanical structure .

First, this study constructs a detailed dynamic model of
TDA-TVD to describe the mechanical coupling of its drive

Figure 2: Schematic diagram of TDA-TVD [8].

Figure 3: Velocity diagram of TDA-TVD.

system between the left and right wheels. Next, this study
designs a decoupling compensator that enables us to control
the left and right wheels independently, based on the obtained
dynamic model of TDA-TVD. With the decoupling compen-
sator, we can apply conventional vibration suppression con-
trols originally designed for IWD systems. This way, we can
treat TDA-TVD as an IWD system and the overall vehicle
dynamics control system will be significantly simpler.

As a demonstration of the validity of the obtained dynamic
model of TDA-TVD and decoupling compensator, a simple
feedforward vibration suppression controller based on the in-
verse model of the decoupled drive system is designed, sim-
ulated, and experimentally tested.

The rest of this paper is as follows. First, a dynamic model
of TDA-TVD is obtained. Second, the decoupling compen-
sator and feedforward vibration suppression controller are
designed. Third, simulations and experimental evaluations
using a real vehicle that is equipped with TDA-TVD are
demonstrated. Their results are analyzed and show the va-
lidity of the derived dynamic model and effectiveness of the
proposed decoupling compensator and implemented vibra-
tion suppression control.

2. Derivation of the dynamic model of TDA-TVD

Several types of TDA-TVD have been proposed by Sawase
[7] [8]. As an example of those, a schematic diagram of
TDA-TVD is shown in Fig. 2. Regardless of the different
types of TDA-TVD, the following equations can be derived
comprehensively. The motor torques TRM and TLM are ampli-
fied by the primary gear ratio G through the primary reduc-
tion gears and become TRDm and TLDm, respectively. After
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passing through the following planetary gears, the driveshaft
torques TRds and TLds are transmitted to the wheels. The re-
lation of the rotation speed and torque is visually represented
by a velocity diagram as shown in Fig. 3 [8]. In the figure,
b1 and b2 are the equivalent secondary reduction gear ratios
determined by each gear of the planetary gears. b1 and b2
are designed to be almost equal. From Fig. 3, we have the
following equations

TRin = (b2 + 1)TRDm − b1TLDm · · · · · · · · · · · · · · · · · · · (1)
TLin = (b1 + 1)TLDm − b2TRDm · · · · · · · · · · · · · · · · · · · (2)

where TRin and TLin are the input motor torque imaginarily
converted to the driveshaft side. TRin and TLin are convenient
to deal with the mechanical coupling which will be explained
later. TRm and TLm in Fig. 2 are the transmitted motor torques
to the planetary gears after the gear reduction and represented
by

TRm = TRDm − TRIm · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3)
TLm = TLDm − TLIm · · · · · · · · · · · · · · · · · · · · · · · · · · · · (4)

TRIm = G2Jmω̇Rm · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (5)
TLIm = G2Jmω̇Lm · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (6)

where TRIm and TLIm are inertia torques of the motor, Jm is
the inertia of the motor, and ωRm and ωLm are the motor side
angular speeds after the primary gear reduction. ωRm, ωLm
and the driveshaft side angular speeds ωRds and ωLds have the
following relations

ωRm = (b2 + 1)ωRds − b2ωLds · · · · · · · · · · · · · · · · · · · (7)
ωLm = −b1ωLds + (b1 + 1)ωRds. · · · · · · · · · · · · · · · · · (8)

2.1 Derivation of the linearized model This section
derives the linearized model of TDA-TVD. From the equa-
tions of TDA-TVD shown earlier, we can derive the follow-
ing equations using matrices and vectors

Jω̇ds = Tin − Tds · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (9)

where

J =
(
J11 J12
J21 J22

)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (10)

J11 = [(b2 + 1)2 + b2
1]G2Jm · · · · · · · · · · · · · · · · · · · · (11)

J12 = J21 = −[b1(b1 + 1) + b2(b2 + 1)]G2Jm · · · · (12)
J22 = [(b1 + 1)2 + b2

2]G2Jm · · · · · · · · · · · · · · · · · · · · (13)

ω̇ds =

(
ω̇Rds
ω̇Lds

)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (14)

Tin =

(
TRin
TLin

)
= KTm · · · · · · · · · · · · · · · · · · · · · · · · · · · (15)

K =
(
k11 k12
k21 k22

)
=

(
b2 + 1 −b1
−b2 b1 + 1

)
· · · · · · · · · · · (16)

Tm =

(
TRDm
TLDm

)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (17)

Tds =

(
TRds
TLds

)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (18)

In this paper, we assume that all the elasticity and viscosity
of TDA-TVD are equivalently represented by the driveshaft

stiffness Ks and damping factor Ds. With this assumption, the
driveshaft torque T jds (subscript j is either l (left) or r (right))
and the driveshaft angular speed ω jds have the following re-
lations [11] [12]

T jds =

(Ks

s
+ Ds

)
(ω jds − ωR j) · · · · · · · · · · · · · · · · · (19)

ωR j =
T jds

Jalls
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (20)

Jall = Jw + r2M(1 − λn)/2, · · · · · · · · · · · · · · · · · · · · (21)

where ωR j is the angular speed of the rear wheel, Jall is the
nominal inertia of the wheel at the nominal slip ratio λn (0:
when the wheel is not slipping, 1: when the wheel is slip-
ping), r is the effective radius of the wheel, and M is the
vehicle mass. Assuming that the wheel rotates at the nominal
slip ratio λn, the nonlinear dynamics between the wheel and
the road can be linearized. From (19) and (20), we get the
following equation

ω̇ds =
Jalls2 + Dss + Ks

Jall(Dss + Ks)
Tds. · · · · · · · · · · · · · · · · · · · · (22)

By substituting (22) to (9), we have(
E2 +

Jalls2 + Dss + Ks

Jall(Dss + Ks)
J
)

Tds = Tin · · · · · · · · · · · · (23)

where E2 is an identity matrix of size 2. Here, we define a
matrix g given by

g =

(
g11 g12
g21 g22

)
=

(
E2 +

Jalls2 + Dss + Ks

Jall(Dss + Ks)
J
)−1

. · · (24)

Now we have

Tds = gTin · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (25)(
TRds
TLds

)
=

(
g11 g12
g21 g22

) (
TRin
TLin

)
· · · · · · · · · · · · · · · · · · · · · (26)

From the above equation, we can derive the four transfer
functions as follows

TRds

TRin
= g11 =

g11n

gd
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(27)

TRds

TLin
= g12 =

g12n

gd
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(28)

TLds

TRin
= g21 = g12 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(29)

TLds

TLin
= g22 =

g22n

gd
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(30)

g11n = Jall{J22Jalls3+((J22+Jall)D2
s+J22JallKs)s2(31)

+ 2KsDs(J22+Jall)s+K2
s (J22+Jall)}

g12n = g21n = −J12Jall(JallDss3 · · · · · · · · · · · · · · · · ·(32)
+ (JallKs + D2)s2 + 2KsDss + K2

s )
g22n = Jall{J11Jalls3+((J11+Jall)D2

s · · · · · · · · · · · · ·(33)
+ J11JallKs)s2+2KsDs(J11+Jall)s+K2

s (J11+Jall)}
gd = |J|J2

alls
4+JallDs(2|J|+(J11+J22)Jall)s3 · · ·(34)

+ (|J|(2JallKs+D2)+Jall(J11+J22)(D2
s+JallKs)

+ J2
allD

2
s)s2 + 2KsDs(|J| + (J11 + J22)Jall + J2

all)s
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Figure 4: Block diagram of TDA-TVD.

+ K2
s (|J| + (J11 + J22)Jall + J2

all)
|J| = J11J22 − J12J21 = G4J2

m(b1 + b2 + 1)2. · · ·(35)

Now we have obtained the linear model of TDA-TVD. The
block diagram of TDA-TVD is represented in Fig. 4. In the
figure, the following relations are given to represent the pa-
rameters.

J−1 =
1
|J|

(
J22 −J12
−J21 J11

)
=

(
h11 h12
h21 h22

)
· · · · · · · · (36)(

ωRm
ωLm

)
=

(
b2 + 1 −b2
−b1 b1 + 1

) (
ωRds
ωLds

)
· · · · · · · · · · · · · · (37)

=

(
β11 β12
β21 β22

) (
ωRds
ωLds

)
= B

(
ωRds
ωLds

)
3. Design of the joint torque controller for TDA-

TVD

This section derives and designs a joint torque controller
(JTC) for TDA-TVD that suppresses the driveshaft torque vi-
bration. The JTC is composed of a driveshaft-motor torque
converter, a decoupling compensator, and a feedforward con-
troller.

3.1 Design of the driveshaft-motor torque converter
TDA-TVD has the two inputs TRM and TLM which we can
freely control, and two outputs ωRM and ωLM as the obtain-
able values through the drive-side angular speed sensor which
are used to drive the electric motors.

In order to control the converted motor-side torque inputs
TRin and TLin and estimate the driveshaft angular speeds ωRds
and ωLds, we can utilize the following relations from (15),
(16), and (38)(

ωRds−est
ωLds−est

)
= G−1B−1

(
ωRM
ωLM

)
· · · · · · · · · · · · · · · · · · · · (38)(

TRM
TLM

)
= G−1K−1

(
TRin−ref
TLin−ref

)
. · · · · · · · · · · · · · · · · · (39)

The second equation is called “driveshaft-motor torque con-
verter” (DMTC) and it is shown in the left side block diagram
of the Fig. 5 (which is G−1K−1, colored light blue). The first
equation is called “driveshaft angular speed estimator” (DSE)
and it is shown as the red colored G−1B−1 in the Fig. 5.
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Figure 5: Driveshaft-motor torque converter (colored light
blue) and driveshaft angular speed estimator (colored red) of
TDA-TVD and simplified block diagram.

Figure 6: Decoupling compensator E is inserted before TDA-
TVD (Plant P).

With this DMTC, the driveshaft torque can be controlled,
but with slight errors due to the inertia torque of the motors
and the coupling. Some sort of wheel speed control or anti-
skid-wheel control can be implemented and achieved with the
DMTC. However, as mentioned earlier, due to the elasticity
and viscosity of TDA-TVD, an undesirable vibration is in-
evitable. The DMTC will be also called a base controller in
the later simulations and experiments.

3.2 Design of the decoupling compensator In or-
der to directly control the driveshaft torque itself, we need
to construct a decoupling compensator so that the left and
right wheels can be independently controlled. The decou-
pling compensator E is added before the direct torque con-
troller, as shown in Fig. 6. In the figure, the plant P is the
TDA-TVD with the DMTC shown in Fig. 5, but the outputs
are the driveshaft torques. Thankfully, there is a traditional
method called “diagonalization” of multi-input-multi-output
systems [13] and each gain of the decoupling compensator E
is given by

e11 = e22 = 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (40)

e12 = −
g12

g11
= −g12n

g11n
· · · · · · · · · · · · · · · · · · · · · · · · · · · (41)

e21 = −
g21

g22
= −g12n

g22n
· · · · · · · · · · · · · · · · · · · · · · · · · · · (42)

Now, the transfer functions with the decoupling compen-
sator E are obtained as follows

TRds

TRin
=

Jall(Dss + Ks)
J11Jalls2+Ds(J11+Jall)s+Ks(J11+Jall)

· · (43)
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Figure 7: Equivalent block diagram of TDA-TVD with de-
coupling compensator E.

TRds

TLin
=

TLds

TRin
= 0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (44)

TLds

TLin
=

Jall(Dss + Ks)
J22Jalls2+Ds(J22+Jall)s+Ks(J22+Jall)

. · · (45)

The equivalent block diagram of TDA-TVD with the decou-
pling compensator E is shown in Fig. 7. It clearly suggests
that the left and right wheels can be controlled independently.

The transfer functions of the decoupled system have sec-
ond order characteristic polynomials. The decoupled system
has a pair of conjugate complex roots −α ± jβ ( j =

√
−1)

given by

α =
Ds(JM + Jall)

2JM Jall
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · (46)

β =
1
2

√
JM + Jall

JM Jall

(
4Ks −

Ds(JM + Jall)
JM Jall

)
· · · · · · · (47)

where JM is either J11 or J22. The step response of the decou-
pled system (T jin(t) = 1) is given by

T jds(t) =
Jall

JM+Jall

(
1−e−αt cos βt

)
+

Ds

2JMβ
e−αt sin βt

≈ Jall

JM+Jall

(
1−e−αt cos βt

)
· · · · · · · · · · · · · · (48)

The equation suggests that the final value will have a slight er-
ror due to the motor side inertia. With the typical parameters
as shown in Tab. 1, we can assume JM ≪ Jall and 4JMKs ≫
Ds and we can derive Jall

JM+Jall
≈ 1 and Ds

2JMβ
≈ Ds

2
√

JM Ks
< 1

10 .
Therefore, the second term of the right side of this equation is
negligible compared to the first term. The normalized over-
shoot of the step response of the decoupled system OS is
obtained by substituting t = π/β to (48) as follows

OS = e−απ/β. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (49)

As an example, a vehicle with typical parameters as shown in
Tab. 1 has a driveshaft vibration frequency of β/(2π) = 2.922
Hz, and the normalized overshoot OS = 0.749 (JM = J11).
This causes undesirable driveshaft and yaw rate vibrations
that must be suppressed.
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Figure 8: Block diagram of TDA-TVD with feedforward.

3.3 Design of the feedforward controller A feed-
forward controller is designed by the inverse of the transfer
function of the decoupled system T jin

T jds
[12], which is given by

CFF =
JM Jalls2+Ds(JM+Jall)s+Ks(JM+Jall)

Jall(Dss + Ks)
. · · · (50)

Since CFF is not proper, a low pass filter (LPF) QFF is added.
With this feedforward controller, the decoupling compen-
sator and the DMTC, the transfer function T jds

T jds−re f
becomes

a unity (i.e., 1) so that undesirable vibration could be sup-
pressed, which is shown in Fig. 8.

A feedback controller can also be designed and imple-
mented in the same way with [12]. However, in order to
evaluate the derived dynamic model and the decoupling com-
pensator of TDA-TVD, this study only implements the feed-
forward controller for the simulations and experiments.

4. Simulations of the joint torque controller for
TDA-TVD

Simulations of the JTC for TDA-TVD is conducted using
MATLAB and Simulink environment. The wheel model is
approximated by a linear model as shown in Fig. 4.

4.1 Simulation conditions In order to evaluate the
performance of the JTC, the base controller without the JTC,
the JTC with the feedforward and the decoupling compen-
sator are tested. For comparison, the modified JTC which
only considers inertia (JTC–s0) and given by the following
equations

e12−s0 =
J12

J22 + Jall
· · · · · · · · · · · · · · · · · · · · · · · · · · · · (51)

e21−s0 =
J12

J11 + Jall
· · · · · · · · · · · · · · · · · · · · · · · · · · · · (52)

CFF−s0 =
JM + Jall

Jall
, · · · · · · · · · · · · · · · · · · · · · · · · · · · · (53)

is also tested. These equations can be simply obtained by
substituting s = 0 to the equations of the decoupling com-
pensator and the feedforward controller.
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Table 1: Simulated vehicle parameters.
Vehicle mass M 1500 kg

Effective wheel radius r 0.35 m
Wheel inertia Jω 1.5 kg·m2

Motor inertia Jm 0.02 kg·m2

Primary reduction gear ratio G 12
Equivalent secondary reduction gear ratio b1, b2 0.7, 0.71

Stiffness of driveshaft Ks 3000 N/rad
Damping factor of driveshaft Ds 30 N/(rad/s)

Nominal slip ratio λn 0
Nominal wheel inertia Jall 93.38 kg·m2

Inertia matrix J11, J12, J22 9.83, -6.92, 9.77 kg·m2

Step response parameters α, β, OS (JM = J11) 1.686, 18.36, 0.749

Table 2: Parameters of joint torque controller.
Left side driveshaft torque reference TLds−re f -450 Nm

Right side driveshaft torque reference TRds−re f 450 Nm
Rate limiter for T jds−re f ± 2000 Nm/s
Cutoff frequency of QFF 10 Hz

While this JTC–s0 is very simple to implement and theo-
retically eliminates inertia torque coupling and offsets, vibra-
tion caused by elastic and damping elements is expected to
remain. Yet again, since a controller with no dynamics (i.e.
s = 0) is convenient for the practical implementation, JTC–
s0 will be compared as well. The left and right wheels are
driven with independently different reference torque values
for three seconds. In each case, the vehicle accelerates from a
stand still condition. The reference driveshaft torque T jds−re f
changes in a “step manner” with a rate limiter of 2000 N/s.
Tab. 1 and Tab. 2 show the specification of the simulated ve-
hicle and parameters of the JTC.

4.2 Simulation results Fig. 9 shows the simulation
results of the JTC for TDA-TVD. In the figures, subscription
”ref”, ”wo”, ”E+FF(s=0)”, and ”E+FF” suggest the reference
value of the driveshaft torque (blue dashed line), measured
value with the base control (red line), with JTC–s0 (green
line), and with full JTC (black line), respectively. Fig. 9(a)
and Fig. 9(b) show the driveshaft torque TRds and TLds.

Obviously, the base control (without the JTC, red line) has
the largest vibration and overshoot of all cases. In addition,
since the base control does not consider the motor inertia
torque at all, a certain offset error remains. The magnitude
and degree of the offset error depend on the torque difference
between the left and right wheels. The wheel which has the
largest torque input always has a smaller driveshaft torque
value compared to the reference value, and vice versa.In the
case of the JTC–s0, it reduces the offset error regardless of
the torque difference. However, the vibration still remains,
naturally. On the other hand, the full JTC reduces the joint
torque vibration significantly. Furthermore, during the tran-
sition, driveshaft torques follow the reference values almost
without delay.

5. Experimental validations of the joint torque
controller for TDA-TVD

Experimental validation of the JTC for TDA-TVD is con-
ducted using a real vehicle with the TDA-TVD unit. The
experimental vehicle is shown in Fig. 10. The experimental
vehicle is equipped with a device that can measure driveshaft
torques T jds on both sides.
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Figure 9: Simulation results.

Figure 10: Experimental vehicle equipped with TDA-TVD.

5.1 Test of the decoupling compensator To confirm
the effect of the designed decoupling compensator, the ex-
perimental vehicle is lifted and we attempt to rotate the left
side wheel by giving some non-zero driveshaft torque refer-
ence TLds−re f only to the left side wheel using the decoupling
compensator.

Fig. 11 shows the results of the test. Without the decou-
pling compensator (Fig. 11(a)), both wheels started to ro-
tate due to the motor side inertia coupling. On the other
hand, with the decoupling compensator (both for the full JTC
and JTC–s0), the right side driveshaft torque TRds maintains
around 0 Nm for around 3s, and the right side wheel was suc-
cessfully kept to zero rotation speed until 4s. The viscosity
of TDA-TVD (inside the planetary gear unit) is another cou-
pling element and it leads to the rotation of the other side of
the wheel. This viscosity is currently not modeled and its
identification and compensation will be future work.
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(b) With decoupling compensator (s = 0).
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Figure 11: Test results of the decoupling compensator.

Overall, the decoupling compensator effectively reduces
the coupling between the left and right wheels, but further
modeling of the viscosity coupling will improve the decou-
pling performance.

5.2 Experimental conditions Fig. 12 illustrates the
experimental verification. The experimental vehicle goes on
a straight path at a speed of 45 km/h driven by the front
wheels. Then, the rear wheels are driven with a torque differ-
ence of 900 Nm for 3 seconds, which is the same condition
with the simulation shown earlier. While the torque vector-
ing system is working, the steering angle is maintained at 0
degree by the driver.

The JTC is implemented with the vehicle parameters of the
experimental vehicle. The equivalent stiffness and damping
factor of the driveshaft (Ks and Ds) of the experimental ve-

Figure 12: Illustration of the experiment.
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Figure 13: Experimental results without JTC.

Table 3: Evaluation of joint torque controller.
Without JTC JTC–s0 JTC

Offset error eTRds [%] -14.1 -7.4 -5.4
Overshoot OS TRds [%] 69.8 70.2 18.2
Settling time ts−TRds [s] 1.19 1.19 0.80

Overshoot OS γ [%] 100.0 115.0 23.4
Settling time ts−γ [s] 1.21 1.21 1.23

hicle were estimated by measuring the driveshaft torque of
the step response. Correspondingly with the simulation, both
sides of the driveshaft torque T jds are measured and their re-
sponses are evaluated with three situations: without the JTC,
with the JTC–s0, and with the full JTC. Yaw rate γ is also
measured and evaluated.

5.3 Experimental results Figs. 13-15 show the ex-
perimental results of the JTC for TDA-TVD. There are large
vibrations of the measured driveshaft torques T jds and yaw
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Figure 14: Experimental results with JTC–s0.

rate γ with the base control (without the JTC, Fig. 13), in
addition to the non-negligible offset error. With the JTC–s0,
the offset error is cut by about half compared to the base con-
trol. However, as expected, the vibrations of the measured
driveshaft torques T jds and yaw rate γ remain. On the other
hand, both vibrations are considerably reduced with the JTC.
Overshoots of driveshaft torques TRds and yaw rate γ become
about one third and one fourth, respectively. Furthermore,
the rise of the driveshaft torques T jds becomes rather slightly
sharper, without compromising the response.

Tab. 3 quantitatively shows the performance of each of the
controllers. On the table, eTRds is the offset error of the right
side driveshaft torque TRds between the settling value and the
reference value. Overshoot OS TRds is the difference between
the value of the first peak and the settling value of the right
side driveshaft torque TRds. Settling time ts−TRds is the du-
ration between the moment TRds settles within ±5% of the
settling value. Overshoot OS γ and settling time ts−γ are de-
fined in the same way.

Overall experimental results confirm the validity of the
derived dynamic model of TDA-TVD, the effectiveness of
the decoupling compensator and the feedforward controller.
However, offset errors still remain likely due to the unmod-
eled/neglected elements such as the coupling cause by a cer-
tain viscosity between the left and right wheels (i.e. planetary
gears), and the inertia of gears. Better tracking and control
of the driveshaft torque T jds could be achieved by more a de-
tailed system identification including the aforementioned ele-
ments and its investigation will be future work. Furthermore,
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Figure 15: Experimental results with JTC.

co-use of the feedback controller and various conventionally
proposed vibration suppression algorithms could improve the
performance as well and will also be investigated in the fu-
ture.

6. Conclusion
This study proposed a dynamic model and a decoupling

compensator of a two-input-two-output torque vectoring dif-
ferential with torque difference amplification (TDA-TVD)
for electrified vehicles in order to achieve both independent
drive of the left and right wheels and improved controllabil-
ity. The decoupled system of TDA-TVD can be treated as an
Individual-wheel-drive (IWD) system and any conventional
vehicle dynamics and motor drive controllers for IWD sys-
tem can be applied. As a benchmark, a feedforward-based
vibration suppression controller was applied and tested. The
results of experimental evaluations using a real vehicle with
a TDA-TVD unit showed that both the driveshaft torque and
yaw rate vibrations were reduced to about 25% compared to
the baseline without any control while the torque vectoring
is in function. The process of modeling of any two-input-
two-out-put motor drive systems and designing of its con-
trollers will be significantly more efficient with the proposed
approach. An improved and more detailed system identifi-
cation of TDA-TVD such as the viscosity coupling, imple-
mentation of an additional feedback controller, and further
improvement of the vibration reduction will be future work.
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