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Previous studies have proposed various optimization algorithms, such as dynamic programming (DP) and model
predictive control (MPC), to reduce the energy consumption of autonomous-driving vehicles. The difficulties in the
industrial applications of these methods are their computational costs and tuning parameters. In this paper, we propose
a linear quadratic regulator (LQR), a low-computational-cost algorithm. The proposed controller calculates the input
within a sampling period of 10 kHz. By the approximated linear-parameter-varying (LPV) modeling of a vehicle and a
motor, we considered the energy loss in the cost function of the LQR. Thus, the proposed method had only one tuning
parameter. The effect of changing this parameter, the solver of the LQR for the LPV model, and the influence of the
approximation of the models were analyzed. We compared the proposed LQR and DP using computer simulations, a
simulation bench, and field experiments. Based on these comparisons, the validity of the proposed method for enhanc-
ing the energy efficiency for industrial applications without additional computational hardware was demonstrated.
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1. Introduction

1.1 Driver-Assistance System Yearly in road acci-
dents, there are nearly 20–50 million people suffering in-
juries (1). Numerous devices, such as disk brakes, seat belts,
and airbags, have been developed to provide road safety. In
the 1990s, with the advancements in sensors and computers,
anti-lock braking systems (ABS) and electronic stabilization
programs (ESP) were realized (2). Using sensors for monitor-
ing the outside of a vehicle, other assistance systems, such as
auto-braking and lane departure warning, have also been de-
veloped. These systems are called advanced driver-assistance
systems (ADAS). In particular, adaptive cruise control (ACC)
was developed to maintain a safe, preset distance between
cars in a particular lane (3) (4). Because ACC enables a vehicle
to operate without the input of the driver, it leads to a highly
energy-efficient driving experience (5).

1.2 Energy-Efficient Driving Energy-efficient driv-
ing technologies are essential for three reasons: range ex-
tension, reducing CO2 emission, and decreasing the running
cost. Range extension is particularly important for electric
vehicles, whose cruising distances per supply are relatively
shorter than those of gasoline vehicles (6). From environmen-
tal aspects, energy-efficient driving has the potential to sig-
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Fig. 1. Picture of FPEV2-Kanon, an experimental vehi-
cle manufactured by our group. In this study, this vehicle
was used in the experiments and simulations.

nificantly reduce CO2 emissions, which is advantageous be-
cause the transportation sector contributes 24% of the global
CO2 emissions from fuel combustion (7). Furthermore, from
an economic perspective, increasing the energy efficiency of
a vehicle reduces the running cost, which is gaining increas-
ing dominance in shared economies (8). Therefore, achieving
energy-efficient driving is becoming extremely critical. In
this study, energy-efficient driving was achieved by optimal
velocity control and reducing the energy loss.

1.3 Previous Research The energy loss of electric
vehicles consists of electrical loss and dynamical loss. The
copper loss and iron loss of a motor contribute to the electri-
cal loss, and dragging forces, such as air resistance, viscous
resistance, and rolling friction, cause the dynamical loss. In
this study, we reduce all the losses together by achieving op-
timal acceleration and deceleration. Our research group has
previously published a paper on reducing energy consump-
tion with consideration of the ride comfort (9); however, we
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(a) d-axis (b) q-axis

Fig. 2. Equivalent circuit of a permanent magnet syn-
chronous motor (PMSM).

did not consider this in the present study, and mainly focused
on simple tuning and the computational cost.

Previous studies have proposed various optimal control
techniques to reduce the energy consumption of a vehicle
by achieving autonomous driving. The gradient method is
an optimization method with precomputation. It calculates
the optimal input before driving and applies a feedforward
control (10). This method needs consideration of the vehicle
control, which is significantly affected by the disturbance.

Dynamic programming (DP) is a feedback control with a
calculated table of inputs. Autonomous-driving trains widely
use this method for reducing the energy consumption (11) (12).
For electric vehicles, DP is also employed to calculate the
optimal velocity trajectory (13) (14). DP is a global optimization
algorithm and can easily deal with constraints. DP typically
yields the best results among the various methods; however,
the size of the calculated table is extremely large to support
the various scenarios of a vehicle.

Model predictive control (MPC) is an online optimization
control that predicts a future state. MPC is widely used to re-
duce the energy consumption of vehicles (15) (16). In MPC, it is
challenging to complete the computations in the step period
because of the complexity of the optimization. To solve this
problem, methods such as considering the constraints with a
reference governor (17), and combining with the precomputa-
tion of DP (18) have been proposed. However, it is still chal-
lenging to tune the parameters of the cost function for MPC.

These methods are not typically chosen because of the lim-
itation of the production costs. Our experimental vehicle
has sufficient memory and computing power, which typical
production cars do not possess. For these cars, this low-
computational-cost controller would be a good option, and
therefore, this research is important. In this paper, we pro-
posed a low-computational-cost algorithm for applying to
real vehicle control.

1.4 Contribution In this study, we used a linear
quadratic regulator (LQR) as an optimization algorithm hav-
ing a low computational cost. The proposed controller op-
erates without expensive memory or computer requirements
and calculates the input in a sampling period of 10 kHz. Pre-
vious studies with LQRs considered the weight of the cost
function and its value in the control system as the tuning
parameters. Thus, an LQR is currently challenging to de-
sign (19) (20). To solve this problem, we designed an LQR con-
troller with only one tuning parameter. With appropriate ap-
proximations, we considered the energy loss of an electric
vehicle as the cost function of the LQR. Furthermore, we
analyzed the parameter both quantitatively and qualitatively.

In this study, we compared the proposed method with DP,
which is a global optimization algorithm. We evaluated the

Table 1. Parameters of the motors. The parameters are
different for the front wheel and the rear wheel.

Parameter Description Front Rear

Jω Wheel inertia 1.24 kgm2 1.26 kgm2

Lq q-axis inductance 0.69 mH 2.34 mH
Φ Leakage flux 0.18 Wb 0.249 Wb
R Copper resistance 0.0602Ω 0.1036Ω

Rc0 Equivalent iron loss resistance 55Ω 454.23Ω
Rc1 Equivalent iron loss resistance 0.14Ω 0.1516Ω
Kt Motor constant 2.7 Nm/A 1.245 Nm/A
Pn Number of pole pairs 20/2 20/2

methods by not only computer simulations but also by ex-
periments on a test bench and in a test field with our vehi-
cle, FPEV2-Kanon, which is shown in Fig. 1. By linear-
parameter-varying (LPV) modeling of the vehicle and the
motor, the energy consumption was improved.

The remainder of this paper is as follows. Section 2 de-
scribes the experimental vehicle and its model, and Section 3
presents the details of the proposed LQR controller design
and comparison with the DP controller. Section 4 discusses
the results of the simulations and experiments and analyzes
the parameter, solver, and approximation. Finally, Section 5
concludes this paper.

2. Modeling

2.1 Experimental Vehicle FPEV-2 Kanon, as dis-
placed in Fig. 1, is an experimental vehicle manufactured
by our research group. This vehicle has four independently
driven in-wheel motors, and the motor is an outer-rotor per-
manent magnet synchronous motor (PMSM). Because all the
in-wheel motors are direct-drive, the reaction force transfers
to the road without the effect of the gear backlash or shaft
torsion. Therefore, we only considered the loss of the motor
and the driving resistance as the energy loss components.

2.2 Power Model of Motor The equivalent circuit of
the motor is displayed in Fig. 2. The input power of the mo-
tor, Pin, is defined as the sum of the output power, Pout, cop-
per loss, Pc, and iron loss, Pi. They are

Pout=
∑
all

ωT, Pc =
∑
all

R
(

T
Kt

)2

, · · · · · · · · · · · · · · · (1)

Pi =
∑
all

ωPn

Rc


(
Lq

T
Kt

)2

+ Φ2

 , · · · · · · · · · · · · · · · · · (2)

where T and ω are the torque and rotational speed, respec-
tively, and the equivalent iron loss resistance, Rc is

1
Rc
=

1
Rc0
+

1
Rc1|ωPn|

. · · · · · · · · · · · · · · · · · · · · · · · · · · · (3)

The parameters of the motor are listed in Table 1.
2.3 Vehicle Dynamics Model The dragging force of

the vehicle is described as

FDR = µrMg + b|v| + Fav
2, · · · · · · · · · · · · · · · · · · · · · · · (4)

where each term refers to the rolling resistance, viscous re-
sistance, and air resistance. All the parameters are listed in
Table 2. The load forces of the front and rear wheels are ex-
pressed as follows:
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Table 2. Parameters of the vehicle.

Parameter Description Value

M Vehicle mass 880 kg
g Gravity acceleration 9.8 m/s2

b Viscous resistance coefficient 10.7 kg/s
r Wheel radius 0.302 m

Fa Air resistance coefficient 0.552 Ns2/m2

µr Rolling resistance coefficient 0.0126
hg Height of center of gravity (CG) 0.51 m
lf Distance between CG & front wheel 1.013 m
lr Distance between CG & rear wheel 0.702 m
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Fig. 3. The relation between the slip ratio and the fric-
tion coefficient. The magic formula (21) calculates the ac-
tual value. The linear value is calculated with Ds.
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l
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)
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l
Mv̇

)
· · · (5)

To calculate driving force, slip ratio λ is defined as

λ =
rω − v

max(v, rω)
, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (6)

where ω is the wheel angular velocity. The relation between
the road friction coefficient, µ, and the slip ratio, λ, is pre-
sented in Fig. 3. With this relation, we can calculate the driv-
ing force of each wheel as F = µN. The equations of the
wheel rotation and the vehicle motion are

Jωω̇ = T − rF, Mv̇ =
∑

F − FDR, · · · · · · · · · · · · · (7)

where T is the torque and F is the driving force of each wheel.

3. Controller
3.1 Previous Approach for Comparison We com-

pare DP with the proposed method because the results with
DP are typically the best among those of other methods.
DP is a commonly used offline optimization algorithm for
trains (12). DP divides the problem into multiple subproblems,
and the optimization is solved efficiently with the results of
the subproblems. The problem is discretized by the velocity
and the position to apply DP. We approximated the power
model of the motor as follows:

Pout=
1
2
vFall

∑(
1 +

Fall

4DsN

)
, · · · · · · · · · · · · · · · · · · · (8)

Pc =
r2

8
F2

all

∑ R
K2

t
, · · · · · · · · · · · · · · · · · · · · · · · · · · · · (9)

Pi = 2
v2

r2

∑ P2
n

Rc


(

rLqFall

4Kt

)2

+ Φ2

 , · · · · · · · · · · (10)

to calculate the power from the discretized velocity. Fall is
the sum of the driving forces, and Ds(= 12) is the driving
stiffness, which is visualized in Fig. 3.

In this approach, the velocity of the vehicle is optimized.

min
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Fig. 4. The algorithm of DP. From the final position
and velocity, the optimal velocity is calculated backward.

PI Controller

Fig. 5. Block diagram of the velocity controller. This
controller was used in a previous approach of DP.

The optimization algorithm is presented in Fig. 4. The eval-
uation function is the energy consumption, Win, which is the
time integration of Pin(= Pout + Pc + Pi). DP calculates the
optimal velocity for each position by setting the value of the
goal to 0 if the velocity is 0 m/s and to ∞ if it is not. Us-
ing the result of the next step, DP determines the minimum
value of the evaluation function in each step and calculates
the optimal velocity of each position in the table.

Using the calculated velocity trajectory, the vehicle is con-
trolled to follow the velocity, v∗, and its acceleration, a∗. The
velocity controller is shown in Fig. 5. In this case, λ∗ = 0.05
and the gains of the PI controller are set as Kp = 10M and
Ki = 25M. Specifically, the pole is set as −5 rad/s for the
plant sMv = F. Using the controller, the inverter torque in-
put, T ∗, is calculated. The details of this approach are pre-
sented in a previously published article of our group (22). Be-
cause creating a table in DP under numerous conditions is
impractical, the table in this study is limited to the problem
establishment used in this paper. Nevertheless, the compu-
tational time to form the table is more than a few minutes.

3.2 Linear-Parameter-Varying Model In this study,
the LQR was used to optimize the energy consumption. To
apply the LQR, we approximated the driving resistance as a
first-order equation,

FDR = µrMg + b|v| + Fav
2 ≈ A + Bv, · · · · · · · · · · · · (11)

where A and B are the driving resistance coefficients. In this
study, the proposed method approximated the driving resis-
tance every step as a linearization around the state at the step.
The linearization is displayed in Fig. 6. The coefficient B is

B(v′) = b + 2Fav
′, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (12)

where v′ is the velocity at the step. Thus, the model is de-
scribed as an LPV model of the vehicle velocity, v.

3.3 Controller Design The linearized driving resis-
tance coefficient, B, simplifies the vehicle model as

M
dv
dt
= Fall − B(v)v, · · · · · · · · · · · · · · · · · · · · · · · · · · · · (13)

where Fall is the sum of the driving forces of the four wheels.
Because the energy loss from the wheel slip is negligible, the
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Fig. 6. The linearization of the driving resistance. In
this figure, the velocity at the step of the linearization is
30 km/h.

wheel slip is ignored, and

rFall =
∑
all

T =
∑
all

Kti = 4Kti · · · · · · · · · · · · · · · · · · (14)

is formulated. T and i are the torque and current of the mo-
tor, respectively, and Kt is the motor coefficient. Using this
equation, equation (13) becomes

M
dv
dt
=

4Kti
r
− B(v)v · · · · · · · · · · · · · · · · · · · · · · · · · · · (15)

and is described with the input current, i, of the motor and
velocity, v, of the vehicle.

To apply the LQR, the circuit equation of the motor is ap-
proximated as

L
di
dt
= V − Ri − Keω, · · · · · · · · · · · · · · · · · · · · · · · · · · · (16)

which ignores the iron loss and only considers the copper
loss. In this equation, V is the voltage, Ke is back electro-
motive force constant, and R is the copper loss resistance.
Ignoring the wheel slip and assuming v = rω, equation (16)
is rewritten as

L
di
dt
= V − Ri − Kev

r
, · · · · · · · · · · · · · · · · · · · · · · · · · · · (17)

and also described with i and v. The velocity and position
errors caused by ignoring the wheel slip are less than 1 %,
which value is acceptable for daily driving.

Using these formulations, calculating (15) × v + (17) × 4i
and assuming Kt = Ke lead to

d
dt

(
1
2

Mv2 + 4
1
2

Li2
)
= 4Vi − (4Ri2 + Bv2). · · · · · · (18)

The right side of equation (18) consists of the output power,
Vi, copper loss, Ri2，and driving resistance, Bv2. Thus, the
objective should be minimizing the loss term, 4Ri2 + Bv2.

In the LQR, the state space system is

dx
dt
=

(
0 1
0 − B

M

)
x +

(
0

4Kt
rM

)
u, · · · · · · · · · · · · · · · · (19)

where the state, x = (p v)T , consists of the position, p, and
velocity, v, and the input u = i∗ is the current reference. Here,
the current control of the inverter is assumed as ideal.

The evaluation function of the LQR is

J(u) =
∫ ∞

0
(xT Qx + uT Ru)dt, · · · · · · · · · · · · · · · · · · (20)

and by setting the weights, Q and R, as

40 m
0 km/h Plant

Calculated
Every Step

Fig. 7. Block diagram of the controller. In this case, the
vehicle stops at 40 m.
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Fig. 9. Simulation results with different solvers. Alge-
bra is the result of the proposed method, and Euler and
Runge are the results of the differential equation. (a)
Trace of calculated P is different in the proposed method.
(b) Calculated inputs are close to each other.

Q =
(

q 0
0 B

)
, R = 4R, · · · · · · · · · · · · · · · · · · · · · · (21)

the function to be integrated in equation (20) is converted to

xT Qx + uT Ru = qp2 + Bv2 + 4Ri2, · · · · · · · · · · · · · (22)

where q is the only parameter to be tuned. Thus, the mini-
mization of the evaluation function is equivalent to the min-
imization of the energy loss, Bv2 + 4Ri2, and position error,
qp2. With this formulation of the LQR, the controller calcu-
lates the optimal feedback gain, K, every step. Fig. 7 presents
the block diagram of this controller.

3.4 Parameter Tuning Method In the proposed
controller, the only parameter to be tuned is q. This parameter
is required to reduce the offset of the position. Considering
the friction of a road, we simulated the offset with different q,
and determined the relations between the values of the energy
loss, Bv2 + 4Ri2, and q. The relations are shown in Fig. 8. A
larger q results in a smaller offset but leads to more energy
consumption. With these relations, a designer can determine
the parameter, q. For example, if a designer allows a position
offset of 1 m, then the parameter is tuned as q = 1.0. This
value is used in the simulations and experiments.

3.5 Low-Computational-Cost Solver For a time-
variant system and the cost function,
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0 km/h

STOP
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Fig. 10. Illustration of the problem establishment. The
vehicle decelerates from 30 km/h and stops at 40 m.

ẋ = A(t)x + B(t)u, x(0) = x0, · · · · · · · · · · · · · · (23)
J(u) =

∫ ∞
0 (xT Q(t)x + uT R(t)u)dt, · · · · · · · · · · · · · · (24)

it is generally required to solve Riccati differential equation

AT P + PA − PBR−1BT P + Q = −Ṗ. · · · · · · · · · · · (25)

To solve the above numerically, the Euler method and the
Runge–Kutta method are widely used. However, solving
with these methods requires a high computational cost. In
this study, we assumed Ṗ = 0 for every step and solved the
algebraic Riccati equation,

AT P + PA − PBR−1BT P + Q = 0. · · · · · · · · · · · · · (26)

The effect of assuming Ṗ = 0 was estimated and displayed
in Fig. 9. Algebra is the result of solving the algebraic Ric-
cati equation, and Euler and Runge are the results of solving
the Riccati differential equation with the Euler method and
the Runge–Kutta method, respectively. With these methods,
P is computed backward from the final state. This simulation
uses the actual simulation result of the vehicle for the values
of the position and velocity for each step.

Fig. 9 (a) shows the trace of P. P is almost the same with
the Euler method and the Runge–Kutta method, but is differ-
ent with the algebraic Riccati equation. In Fig. 9 (b), how-
ever, the calculated current inputs of the controller by all the
solvers are sufficiently close. The input is almost the same
with the algebraic Riccati equation because the inputs from
the position error and velocity error canceled each other.

Because the system is second order, the positive definite
solution, P, of equation (26) can be solved analytically. Us-
ing P, the feedback gain of the controller is calculated as
K = −R−1BT P, and the controller input is u = Kx. Because
the calculation only involves some multiplication and solv-
ing a quadratic equation, the proposed controller completes
the computation within a sampling period of 10 kHz.

4. Evaluation

4.1 Problem Establishment For evaluation, we can-
not use a driving pattern such as the JC08 mode because these
methods change the velocity trajectory. Thus, the problem
establishment for evaluating the proposed method is a sim-
ple decelerating case, as shown in Fig. 10. The reason to
use this is that the share of reducing the energy consumption
here is relatively large. In this deceleration, the objectives
are to maximize the regenerative energy and minimize the
energy consumption. To evaluate the proposed method of
the LPV model, we compared DP, as introduced in 3.1, and
a linear-time-invariant (LTI) model of the proposed method.
The regenerative energy of the DP is the best theoretically.
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Fig. 11. First-order approximation of the driving resis-
tance used in the LTI model. In this figure, the velocity
range is from 0 km/h to 30 km/h.

0 5 10 15 20
Time [s]

0

10

20

30

40

Po
si

tio
n 

[m
]

 

DP
LTI
LPV
Const.

0 5 10 15 20
Time [s]

-15

-10

-5

0

5

Po
w

er
 [k

W
]

 

DP
LTI
LPV
Const.

Const.    DP LTI LPV
22

22.5

23

23.5

R
eg

en
er

at
iv

e 
en

er
gy

 [k
J]

0 5 10 15 20
Time [s]

-10

0

10

20

30

V
el

oc
ity

 [k
m

/h
]

 
DP
LTI
LPV
Const.

(a) Vehicle position. (b) Velocity trajectory.

(c) Inverter input power. (d) Regenerative energy.

Fig. 12. Simulation results (parameter q = 1.0). The
vehicle decelerates from 30 km/h and stops at 40 m.

The regenerative energies of other methods, such as MPC,
are between those of the DP and our proposed method. In the
proposed method of LPV, we linearized the driving resistance
every step around the state at the step, and in the LTI model,
the driving resistance was approximated as a first-order ap-
proximation with the least square method. The approxima-
tion for the LTI model is displayed in Fig. 11.

4.2 Computer Simulations For the computer simu-
lations, we used a full vehicle model of the experimental ve-
hicle. This model had a tire model with the slip ratio and
characteristic of the motor and a vehicle model with the load
distribution of the four wheels. Vehicle control of each op-
timization algorithm is simulated with this model and com-
pared in terms of the energy consumption. For only the sim-
ulation, we also compared constant-acceleration control.

The comparison of the methods is presented in Fig. 12. Us-
ing the method described in 3.4, parameter q was tuned to 1.0.
In Fig. 12, Const. refers to the constant-acceleration control.
Compared to the constant-acceleration control, DP, LTI, and
LPV are more than 3% better in terms of the regenerative en-
ergy. The proposed LPV controller regenerates more energy
than constant-parameter LTI.

4.3 Energy Loss Separation The energy loss from
the simulation is separated to analyze the energy consump-
tion of each method. The energy loss is divided into air resis-
tance Wa, viscous resistance Wv, rolling friction Wr, copper
loss Wc, and iron loss Wi, which are calculated as

Wa=

∫
Fav

3dt, Wv=

∫
bv2dt, Wr=

∫
µrMgvdt,
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Fig. 13. Simulation result of the loss separation. Com-
pared to DP, the proposed method reduces the copper loss
more, whereas it increases the driving resistance.

(a) Simulation bench. (b) Experimental field.

Fig. 14. Pictures of the evaluation using the experimen-
tal vehicle. (a) Simulation bench of ONO SOKKI CO.,
LTD. (b) Experimental field of the Japan Automobile Re-
search Institute (JARI).

Wc=

∫
Pcdt, Wi=

∫
Pidt. · · · · · · · · · · · · · · · · · · · · (27)

The result of the loss separation is presented in Fig. 13.
This uses the simulation result in Fig. 12. Because the rolling
friction is precisely the same for all the methods, the figure
omits the range of 0 kJ–2 kJ. Compared to DP, the proposed
method reduces the copper loss more, whereas it increases
the energy loss from the driving resistance.

4.4 Bench Test The real car simulation bench (RC-
S) shown in Fig. 14 (a) is an instrument of ONO SOKKI
CO., LTD. for bench tests using an actual vehicle. Because
the RC-S absorbs the driving force by directly connecting the
driving wheels to a dynamometer, it can test electric vehicles
with a rapid reaction (23). For the experiment on the bench test,
we employed the experimental vehicle, FPEV-2 Kanon. The
RC-S calculates the velocity of the vehicle, and the position is
calculated as the time integration of the velocity. Under each
condition, we conducted five experiments and then calculated
the mean and the standard error of the energy consumption.

In this bench test, the rolling friction is set higher than
the regular asphalt of the experimental field. The results are
shown in Fig. 15. Using the method discussed in 3.4, param-
eter q was tuned to 1.0. With the proposed LPV control, the
vehicle regenerates more energy than DP in this bench test.
However, the vehicle with the proposed method did not reach
40 m in this bench test, because of the high rolling friction of
the road.

4.5 Field Experiment We used the city course of the
Japan Automobile Research Institute (JARI) and our experi-
mental vehicle FPEV2-Kanon, in the field experiment. Un-
der each condition, we conducted five experiments and calcu-
lated the standard error of the energy consumption. Ignoring
the wheel slip, we used a wheel resolver to measure the ve-
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Fig. 15. Results of the bench test (q = 1.0). The ve-
hicle decelerates from 30 km/h and stops at 40 m. DP:
22.42 ± 0.06, LTI: 22.26 ± 0.05, LTI: 22.57 ± 0.05)
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Fig. 16. Results of the field test (q = 1.0). The vehi-
cle decelerates from 30 km/h and stops at 40 m. (DP:
21.55 ± 0.16, LTI: 19.54 ± 0.08, LTI: 20.05 ± 0.13)

locity of the vehicle and calculated the position as the time
integration of the velocity. This is acceptable because the
difference between the true position and the calculated po-
sition in the bench test was less than 1 %. Thus, the only
sensor used to control was the wheel resolver. We calculated
the energy consumption as the product of the DC values of
the current probe and voltage probe connected to the output
of the boost converter.

Parameter q was tuned with the method presented in 3.4.
The experimental results of the field experiment are shown
in Figs. 16–18. Figs. 16 and 17 are the results of the decel-
eration from 30 km/h with different parameters q. Fig. 18 is
the result of the deceleration from 45 km/h with a distance
of 60 m. Same as in the simulation and bench test results,
the proposed LPV regenerates more energy than the constant-
parameter LTI.

4.6 Discussion In the proposed LQR, we ignored the
wheel slip and iron loss and approximated the driving resis-
tance. The effect of the wheel slip on the energy loss is al-
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Fig. 17. Results of the field test (q = 2.0). The vehi-
cle decelerates from 30 km/h and stops at 40 m. (DP:
21.55 ± 0.16, LTI: 19.41 ± 0.06, LTI: 19.51 ± 0.09)
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Fig. 18. Results of the field test (q = 2.0). The vehi-
cle decelerates from 45 km/h and stops at 60 m. (DP:
54.35 ± 0.15, LTI: 52.31 ± 0.10, LTI: 52.68 ± 0.19)

ready known to be negligible (10), whereas the iron loss and
driving resistance contribute significantly to the energy loss.
As shown in Fig. 13, the iron loss does not change much for
the different controllers. Thus, ignoring the iron loss in the
cost function is acceptable. In the proposed LQR, we consid-
ered the copper loss but approximated the driving resistance.
The proportion of the copper loss in the cost function is rela-
tively large, and the LQR reduces the current, i of the motor
more than DP. This reduces the deceleration and increases
the velocity, v. Thus, the loss from the driving resistance in-
creases for the proposed method.

In the proposed method with the LPV model, the approx-
imation of the driving resistance is better than with the LTI
model. Therefore, the energy loss in LPV is less than in LTI.
Because it is impossible to surpass the result of global opti-
mization DP, the proposed method is valid for reducing the
energy consumption of electric vehicles. Regenerative en-
ergy of other methods, such as MPC, is in between that of
DP and our proposed method. The precalculation of DP re-

Table 3. Comparison of the computational costs of all
the methods. Because the computational cost differs for
each environment, only the decades are shown.

Method Computational Time [µs] Memory Space [KB]

LQR (Proposed) 101 100

DP (Compared) 102 103

MPC (Example) 105 102

quires more than a few minutes for this limited problem es-
tablishment but needs a large memory size. The comparison
of the computational cost is summarized in Table 3. The pro-
posed method is sufficiently fast to complete the computation
without additional computational hardware.

5. Conclusion
Previous studies have proposed various optimization algo-

rithms with different computational costs for the optimization
of the energy consumption of vehicles. High computational
costs and complex parameter tuning are challenging for in-
dustry applications. In this paper, we proposed an LQR as
a simple tuning and low-computational-cost controller and
compared it with the global optimization algorithm, DP, in
terms of energy consumption. With approximations of some
conditions, we considered the energy loss of an electric ve-
hicle in the cost function of the LQR, and the LQR was suc-
cessfully applied to the optimization of the energy consump-
tion of an electric vehicle. The LPV model improved the
approximation of the driving force and reduced the energy
consumption. The strength of the proposed method is simple
tuning and low computational cost, and its regenerative en-
ergy is not better than other methods. However, the proposed
method is a valid option for industrial applications, because
the difficulty of the parameter tuning and hardware cost for
the computations are reduced for implementation. Possible
future work includes comparison with more optimal control
algorithms and consideration of the ride comfort.
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