
Basic Idea of Quadrant Dynamic Programming for
Adaptive Cruise Control to Create Energy Efficient

Velocity Trajectory of Electric Vehicle
Mitsuhiro Hattori

Graduate School of Frontier Sciences
The University of Tokyo

Kashiwa, Japan
hattori.mitsuhiro18@ae.k.u-tokyo.ac.jp

Hiroshi Fujimoto
Graduate School of Frontier Sciences

The University of Tokyo
Kashiwa, Japan

fujimoto@k.u-tokyo.ac.jp

Abstract—Previous studies proposed various optimization al-
gorithms such as gradient method and model predictive control
(MPC) to reduce the energy consumption of vehicles with adap-
tive cruise control. Reducing energy consumption is achieved by
optimal velocity control and reducing energy loss. We propose an
approach based on dynamic programming (DP). DP is a feedback
control with a calculated table of inputs. Autonomous driving
trains widely use this method for reducing energy consump-
tion. We created an algorithm, quadrant dynamic programming
(QDP), to calculate optimal velocity trajectory. We divided the
table into quadrants and seamlessly connected them. With this
algorithm, we managed to support many situations even though
the table is two-dimension. The result of the simulation and bench
tests with an actual vehicle support the fact that the algorithm
is valid.

Index Terms—electric vehicle, dynamic programming, energy
efficiency, optimization, adaptive cruise control

I. INTRODUCTION

Adaptive cruise control (ACC) was developed to maintain
a safe, preset minimum distance between cars in the same
lane [1]. Since ACC enables autonomous car following without
driver’s input, ACC creates more energy-efficient driving ex-
perience [2]. Energy-efficient drive technologies are essential
for three reasons, range extension, CO2 emission, and running
cost. Range extension is especially important for electric
vehicles, whose cruising distance per supply is relatively
shorter than gasoline vehicles [3]. From environmental aspects,
there are possibilities to reduce CO2 emissions significantly
by energy-efficient drive, because the transportation sector
contributes 24% of the world’s CO2 emissions from fuel
combustion [4].

Furthermore, from an economic point of view, the energy
efficiency of the vehicle leads to a reduction of running cost,
which is getting more dominant with sharing economy [5].
Achieving energy-efficient driving is, therefore, getting more
critical and energy efficiency of electric vehicles is widely
studied [6]. In this paper, energy-efficient driving is achieved
by optimal velocity control and reducing energy loss.

Energy loss of electric vehicles consists of electrical loss and
dynamical loss. Motor’s copper loss and iron loss contribute to

(b) Simulation bench.(a) Experimental vehicle.

Fig. 1. Picture of FPEV2-Kanon, an experimental vehicle manufactured by
our group. In this paper, we use FPEV2-Kanon in experiment and simulation.
(a) Picture of FPEV2-Kanon. (b) Simulation bench RC-S of Ono Sokki Co.,
Ltd.

the electrical loss, and dragging forces such as air resistance,
viscous resistance, and rolling friction cause dynamical loss.
In this paper, we reduce all the loss together by achieving
optimal acceleration and deceleration. Previous studies pro-
posed various optimal control techniques to reduce the energy
consumption of the vehicle by autonomous driving.

The gradient method is an optimization method with pre-
computation. It calculates the optimal input before driving
and applies feedforward control with it [7]. This method
needs consideration for vehicle control, which has a significant
disturbance of the environment.

Model predictive control (MPC) is an online optimization
control which predicts a future state. MPC is widely used to
reduce the energy consumption of vehicles [8], [9]. In MPC,
it is challenging to complete the computation in a step period
because of the complexity of the optimization. To solve this
problem, methods such as considering constraints with refer-
ence governor [10], and combining with the precomputation
of DP [11] are proposed. However, it is still challenging to
tune parameters of the cost function for MPC.

In this paper, we propose an approach based on dynamic
programming (DP). DP is a feedback control with a calculated
table of inputs. Autonomous driving trains widely use this
method for reducing energy consumption [12], [13]. For
electric vehicles, it is also used to calculate optimal velocity



TABLE I
PARAMETERS OF THE IN-WHEEL MOTOR AND THE VEHICLE.

Parameter Description Value

Jω Wheel inertia 1.26 kgm2

Lq q-axis inductance 2.34mH
Φ Leakage flux 0.249Wb
R Copper resistance 0.1036Ω
Rc0 Equivalent iron loss resistance 454.23Ω
Rc1 Equivalent iron loss resistance 0.1516Ω
Kt Motor constant 1.245Nm/A
Pn Number of pole pairs 20/2
M Vehicle mass 880 kg
g Gravity acceleration 9.8m/s2

b Viscous resistance coefficient 10.7 kg/s
r Wheel radius 0.302m
Ds Driving stiffness 12
Fa Air resistance coefficient 0.552Ns2/m2

µr Rolling resistance coefficient 0.0126
hg Height of center of gravity (CG) 0.51m
lf Distance between CG & front wheel 1.013m
lr Distance between CG & rear wheel 0.702m

(a) d-axis (b) q-axis

Fig. 2. Equivalent circuit of the permanent magnet synchronous motor
(PMSM).

trajectory [14], [15]. DP is a global optimization algorithm
and is easy to handle constraints. The result of DP is always
best, but the size of the calculated table is too large to support
the various situation of the vehicle.

To solve this problem, we created an algorithm of ACC with
two-dimension DP instead of three-dimension. The proposed
quadrant dynamic programming (QDP) creates a table for four
segments, and the situations supported by the algorithm are
much more than normal two-dimension DP.

II. EXPERIMENTAL VEHICLE

In this section, the modeling of the experimental vehicle
is described. FPEV-2 Kanon, shown in Fig. 1 (a), is an
experimental vehicle manufactured by our research group.
This vehicle has four independently driven in-wheel motors,
and the motor is an outer-rotor permanent magnet synchronous
motor (PMSM). In this paper, we use two rear motors as
driving wheels.

Since all in-wheel motors are direct-drive, the reaction force
transfers to roads without the influence of gear backlash or
shaft torsion. Therefore, we only consider the motor’s loss
and driving resistance as energy loss.

A. Motor’s Power Model

The equivalent circuit of the motor is shown in Fig. 2. The
input power of the motor Pin is defined as the sum of output
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Fig. 3. The relation between slip ratio and road friction coefficient. The
magic formula [16] calculates the actual value. Linear value is calculated
with driving stiffness.

power Pout, copper loss Pc, and iron loss Pi. Each of them is
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where T and ω are torque and rotational speed, and equivalent
iron loss resistance Rc is

1
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1
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Parameters are shown in Table I.

B. Vehicle Dynamics Model

The dragging force of the vehicle is described as

FDR = µrMg + b|v|+ Fav
2, (3)

where each term refers to rolling resistance, viscous resistance,
and air resistance. Each parameter is shown in Table I.

To calculate driving force, slip ratio λ is defined as

λ =
rω − v

max(v, rω)
, (4)

where ω is wheel angular velocity. Relation between road
friction coefficient µ and slip ratio λ is shown in Fig. 3.

In normal driving situation of |λ| ≪ 1, friction coefficient
is considered as linear and calculated as µ = Dsλ, where Ds

is the normalized driving stiffness. With this relation, we cal-
culate the driving force of each wheel as F = µN = DsλN ,
where N is the load force of the tire.

The equation of rotational motion and equation of the
vehicle motion are

Jωω̇ = T − rF, Mv̇ =
∑

F − FDR, (5)

where T is torque and F is the driving force of each wheel.

III. PROBLEM FORMULATION

In this section, the formulation of the optimization problem
is described. The objective of the optimization is to minimize
the energy consumption of the electric vehicle in a vehicle-
following situation of ACC. As shown in Fig. 4, the controlled
vehicle aims to drive the same speed as the preceding vehicle
and to keep adequate distance to it.
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Fig. 4. Illustration of problem formulation of ACC. The controlled vehicle
aims to drive the same speed as the preceding vehicle and to keep adequate
distance to it.

Since dynamic programming divides the problem into mul-
tiple subproblems, the problem is discretized by velocity and
distance. Thus the model is approximated to be calculated by
the discretized velocity.

A. Approximated Model

To apply dynamic programming (DP), we calculated the
motor power with velocity instead of toque and rotation speed.
The driving force Fr, load force, and slip ratio λr of one rear
tire is calculated as

Fr =
1

2
Fall =

1

2

(
Mv̇ + µrMg + b|v|+ Fav

2
)
,

Nr =
1

2

(
lf
l
Mg +

hg

l
Mv̇

)
, λr =

Fr

DsNr
. (6)

With these values, torque and rotation speed is calculated as

Tr = rFr + Jω v̇
1 + λr

r
, ωr = v̇

1 + λr

r
. (7)

The motor power is calculated by substituting these values for
Eq. (1).

B. Optimization Problem

In this paper, we propose a minimization of energy con-
sumption. The velocity trajectory is optimized for multiple
velocities of the preceding vehicle. For a velocity of preceding
vehicle vpre, the optimization problem is formulated as

min J =

n∑
i=0

Pin(vi, v̇i) ti, (8)

subject to

ti = ∆d/(vi − vpre), v̇i = ∆v/ti, (9)
Fi = Fr(vi, v̇i), |Fi| ≤ Fmax, (10)
di+1 = di + sgn(vi − vpre)∆d, (11)
vn = vpre, 0 ≤ vi ≤ vmax, (12)
dn = dfin, 0 ≤ di ≤ dmax, (13)

where ∆d and ∆v are mesh size of discretized distance and
velocity. Eq. (9) is the actual calculation of v̇ and ti. Eq. (10)
is a constraint for tire force and Eq. (11) is an update of
distance mesh. Eq. (12) and Eq. (13) are the final condition
and constraint for velocity and distance.
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Fig. 5. Basic algorithm of quadrant dynamic programming (QDP). We divided
the table into 4 segments to make the time sequence for back calculation. (a)
Time sequence is consistent for each segment. (b) Calculation is done by
going backwards along the time sequence.

IV. ALGORITHM

In this section, the proposed algorithm, quadrant dynamic
programming (QDP), is described. Dynamic programming
(DP) is a commonly used optimization algorithm for trains
[13]. DP divides the problem into multiple subproblems,
and the optimization is solved efficiently with the results of
subproblems.

Normally, the problem is discretized by velocity, distance,
and time to apply DP [14]. However, for vehicle following
situation, it takes months to calculate the three-dimension DP
for multiple velocity patterns of the preceding vehicle. The
proposed QDP is two-dimension DP, and the calculation time
is a few minutes. Thus the QDP is a more practical algorithm.

While driving, the optimal velocity trajectory for the very
situation is created instantaneously by backward search of
precomputed table of DP [17].

A. Quadrant Dynamic Programming

To calculate the optimal velocity trajectory, the time se-
quence of the table needs to be consistent. Thus the table is
divided into 4 segments at final distance dfin and at velocity
of preceding vehicle dpre. As shown in Fig. 5, each segments
have each time sequence. Thus the optimal trajectory is
calculated by back-calculation from the final cell.

As shown in Fig. 6, we use the minimum energy consump-
tion for each cell. Calculation in each segment is based on
normal DP, but the calculation uses the previously calculated
segment to connect segments seamlessly. The cost of the final
cell is set to 0, and the cost of other cell is the minimum
energy required to reach final state.
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Fig. 6. Calculation of optimization using quadrant dynamic programming
(QDP). To connect segments seamlessly, the calculation uses the previously
calculated segment.
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Fig. 7. Optimization result for vpre = 54 km/h. The contour shows the
required energy to final state [kJ]. From the initial distance and velocity, the
optimal velocity trajectory is calculated by following the arrows. ‘Velocity’
is the absolute velocity of the vehicle and ‘Distance’ is the relative position
of the two vehicles.

Each cell has information of the next cell and the cost. The
optimal trajectory is created by tracing the information of the
next cell from the initial cell.

B. Optimization Result

Optimization result for vpre = 54 km/h is shown in Fig. 7.
The contour shows the cost to the final cell, which is the
required energy to the final state. The arrows show the
information of the next cell. Tracing the arrows creates the
optimal velocity trajectory. In this case, the final distance dfin
is set to 30m.

V. EVALUATION

In this section, the results of the proposed method are
shown. We conducted simulations and a bench test.

A. Simulation

Simulation is conducted to evaluate the result of opti-
mization. We did the simulation with a full model of our
experimental vehicle using MATLAB Simulink. The vehicle
is controlled with velocity controller to follow the calculated
velocity trajectory.
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Fig. 8. Simulation result for vpre = 54 km/h. Initial velocity and distance
are 30 km/h and 40m. Compared with constant acceleration, proposed
method reduced energy consumption. ‘Velocity’ is the absolute velocity of
the vehicle and ‘Distance’ is the relative position of the two vehicles.
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(c) Power. (d) Energy.
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Fig. 9. Simulation result for a preceding vehicle of velocity vpre = 0km/h.
Initial velocity and distance are 30 km/h and 40m. Compared with constant
deceleration, proposed method gained more regenerative energy. ‘Velocity’ is
the absolute velocity of the vehicle and ‘Distance’ is the relative position of
the two vehicles.

Fig. 8 shows the result of following a vehicle of 54 km/h,
and Fig. 9 shows the result of stopping at 40m position. The
initial velocity and distance are 30 km/h and 40m for both
simulation. ‘Pro’ in Fig. 8–9 shows the result of the proposed
method of QDP, and ‘Con’ shows the result of the comparison
method of constant acceleration. The comparison is a velocity
controller with constant acceleration. The results show that the
proposed method minimize energy consumption and maximize
regenerative energy.
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Fig. 10. Experimental result of bench test for a preceding vehicle of
velocity vpre = 0km/h. Initial velocity and distance are 30 km/h and
40m. Compared with constant deceleration, proposed method gained more
regenerative energy.

B. Bench Test

We conducted a bench test with RC-S of Ono Sokki Co.,
Ltd. shown in Fig. 1 (b). Since RC-S absorbs driving force
by directly connecting driving wheels to a dynamometer, it is
capable of testing electric vehicle with fast reaction [18].

For the experiment with bench test, we used the experimen-
tal vehicle, FPEV-2 Kanon. RC-S calculates the velocity of the
vehicle, and the position is calculated as the time integration
of the velocity. For each condition, we experimented five times
and calculated the standard error of energy consumption.

Fig. 10 shows the result of stopping at 40m position. The
initial velocity and distance are 30 km/h and 40m for both
simulation. The conditions are the same as the simulation of
Fig. 9. This bench test shows that the proposed method is
valid, and the simulation is acceptable.

VI. CONCLUSION

Previous studies proposed various optimization algorithms
for the optimization of energy consumption of vehicles. In
this paper, we proposed an approach with quadrant dynamic
programming. Since dynamic programming is a global opti-
mization, the result is always the best. We divided the table
of DP, and the optimization is done with two-dimension DP.

With simulation and bench tests, results show that the
proposed algorithm is valid for an actual electric vehicle.
We are planning to do more experiments before the final
submission.
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