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Abstract—Monitoring cutting force generated during the ma-
chining process is crucial to prevent tool breakage and chattering.
The cutting force observer, which considers the machine tool as
the two-inertia system, has been proposed to estimate cutting
forces in wide bandwidth using multiple encoders. However,
modeling errors and the parameter variation during machining
can deteriorate estimation accuracy in such a model-based
observer. Previous studies solved some modeling error issues,
but inertia, friction, and other parameters that belong to the
moving stage had rarely considered. Therefore, the adaptive
cutting force observer is proposed in this paper. The proposal
consists of online stage parameter identification and updating
algorithm. The effectiveness of the proposed adaptive observer
is demonstrated through the experiments using the simplified
experimental setup.

Index Terms—Machine tool, Cutting force observer, Adaptive
observer, Two-inertia system.

I. INTRODUCTION

Automatic machinings using machine tools support today’s
industries. Among them, cutting is often used in a finishing
process, and the accuracy of cutting has a significant influence
on the precision and the quality of products. In other words,
machining errors in the cutting process greatly affect the
quality of the products. Chatter vibration, high load on the
tool, and tool wear are well-known causes of machining errors.
The cutting force is attracting attention as a useful parameter
in the tool wear monitoring and the tool brakeage prevention
[1]–[3]. Therefore, instead of using expensive sensors to detect
the cutting force, sensorless force estimation using the motor
information in a machine tool has been studied [4]–[6]. In
recent years, a cutting force observer that uses a linear encoder
to measure the position of the stage in addition to the motor’s
rotary encoder, has been proposed [7], and broadband force
estimation without the effect of resonance has been achieved.
However, the model-based force observers have the funda-
mental problem that estimation accuracy deteriorates when the
plant parameters are changed [8]. It is a significant issue in
machine tools where the mass of workpiece changes due to
removal operations.

In order to deal with parameter fluctuations assuming cut-
ting force estimation, robust estimation methods of torsional
torque (the torque applied to the load-side, such as the moving
stage) focusing on the motor and the transmission part such as
the ball-screw, and methods focusing on the nonlinear rigidity
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Fig. 1. Machine tool with ball-screw stage.

of the ball-screw have been proposed [9], [10]. On the other
hand, adaptive force observer is invented in [11]. Still, the two-
inertia system is not taken into account. Anyway, it has not
considered the mass of the load-side parameters, which varies
steadily during and at every machining step. Therefore, in
this study, we propose an adaptive identification of the cutting
force observer that takes into account the variation of the stage
parameters, and experiments confirmed its effectiveness.

II. EXPERIMENTAL SETUP

As a theoretical test of the machine tool, we don’t use the
machine tool itself, but an experimental setup with the same
characteristics as the machine tool. First, it is known that the
ball-screw stage used in a machine tool can be modeled as
a two-inertia system. The two-inertia system consists of the
motor-side inertia JM , the stiffness of the transmission part
K, and the mass of the motor-side ML as shown in the
Fig. 1, and the cutting force observer proposed in previous
study [7] also utilizes this feature. Therefore, the proposed
method is verified by using an experimental setup shown in
Fig. 2, which has the same characteristics as a machine tool
as the two-inertia system. In this experimental machine, the
motor-side and the load-side motor are connected with a shaft,
which reproduces the two-inertia system’s characteristics. TM
is the motor-side motor’s torque, and Ts is the torsional torque
transmitted to the load-side through the shaft, and ωM and
ωL are the motor angular velocity on each side. The load-side
motor can reproduce the input that simulates the cutting force,
treated as Fcut. Fcut is calculated from the drive current of
the load-side motor.
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(b) Frequency response.
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(c) Block diagram of two-inertia system model

Fig. 2. Experimental setup (The two-inertia system motor bench).

TABLE I
IDENTIFICATION RESULTS OF NOMINAL PARAMETERS.

Motor-side inertia JM 2.80× 10−4 kgm2

Motor torque constant Kt 0.5710NmA−1

Torsion stiffness K 1.7× 104 N/mm2

Load-side inertia (w/o weight) JL 2.80× 10−4 kgm2

Motor-side viscus friction coefficient BM 0.002Nm/rad/s
Load-side viscus friction coefficient BL 0.002Nm/rad/s
Motor-side Coulomb friction FCM 0.15Nm
Load-side Coulomb friction FCL 0.15Nm

Here, the nominal model Pn(s) is defined as third-order
transfer function which is modeled from the drive current
iM [A] to the angular velocity ωM [rad/s] measured by the
motor-side encoder (Fig. 2(b)). The nominal parameters shown
in Table I were obtained by curve-fitting to the measured
frequency response. Note that the motor-side Coulomb friction
FCM and the load-side Coulomb friction FCL were measured
separately.
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Fig. 3. Block diagram of the proposed adaptive cutting force observer.
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Fig. 4. Block diagram of cutting force observer based on robust torsion torque
estimation [9].

III. ADAPTIVE CUTTING FORCE OBSERVER

The structure of the proposed adaptive cutting force ob-
server is shown in Fig. 3. The proposed observer consists of
robust torsional torque estimation [9] and the algorithm to
identify model parameters. The block indicated as RLS is the
conditional parameter identification algorithm using recursive
least square (RLS), which is added in the proposal. The
cutting force observer is updated using the identified model
parameters in the RLS block to make the observer adaptive.

The first and second part of this section describes the
cutting force estimation scheme and robust torsional torque
estimation, which are part of the proposed method. Then, the
third part explains the parameter estimation algorithm and the
adaptation idea focused on the load-side.

A. Cutting force observer

The block diagram of the cutting force observer adopted in
this paper is shown in Fig. 4. The blocks surrounded by dashed
lines in the figure provides a robust estimation of torsional
torque Ts. At the same time, the combination of ωM and ωL
measurement performs broadband cutting force estimation [7].

The equation of motion about the load-side inertia JL is
represented as below with the torsional torque Ts as input.

Ts = JL · ω̇L +BL · ωL + FCL · sgn(ωL) + Fcut, (1)

FCL is a friction term that depends on the direction of velocity.
When the torsional torque Ts is estimated as T̂s by the method
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Fig. 5. Frequency analysis of the estimated cutting force in actual cutting
with NVX5080.

described below, the following equation allow us to estimate
the cutting force as F̂cut.

F̂cut = Q(s)Fcut

= T̂s −Q(s)

{
JLsωL +BLωL + FCL · sgn(ωL)

}
(2)

Note that Q(s) is a first-order low-pass filter (LPF), and T̂s is
estimated in the bandwidth of Q(s).

B. Robust torsional torque estimation

The robust torsional torque estimation, surrounded by
dashed line in Fig. 4, is achieved by combining the two
estimation methods described below and mixed with a mixture
ratio αM .

T̂sM

= Q(s)

(
TM − JMsωM −BMωM − FCM · sgn(ωM )

)
(3)

T̂sK = Q(s)
1

s
(ωM − ωL)K = Q(s)∆θK (4)

T̂sM is the estimation by motor-side disturbance observer [12],
and T̂sK is the estimation method focusing on the relative
displacement between the motor-side and load-side [13]. The
estimation of torsional torque with minimum error variance
for modeling and measurement errors is achieved by giving
αM as

αM =
σ2
T̂sK

σ2
T̂sM

+ σ2
T̂sK

, (5)

when the error variance of each estimation is represented by

σ2
T̂sM

= ω̇2
Mσ

2
JM + ω2

Mσ
2
BM

+ J2
Mσ

2
ω̇M

+B2
Mσ

2
ωM

+ σ2
FCM

(6)

σ2
T̂sK

= (θM − θL)
2
σ2
K +K2σ2

θM +K2σ2
θL . (7)

Where σJM , σBM
, σFCM

and σK are modeling error variance
of corresponding parameters, and σωM

, σω̇M
, σθM and σθL

are the measurement error variance. The measurement error
variance due to encoder quantization noise is given by

σ2(q) =

∫ q
2

− q
2

1

q
x2dx =

q2

12
(8)

when the encoder resolution is q. We assume q/t2s for the
sampling period ts as the equivalent resolution of ω̇. See the
reference [9] for the detailed derivation and assumptions.

C. Parameter estimation based on recursive least square

Fig. 3 shows the proposed method, parameter estimation
based on the RLS algorithm is performed in the RLS blocks,
which robustized by the discontinuous projection, and condi-
tional parameter updates [14], [15]. In this algorithm, when
the regressor ϕ[k] at the k sample satisfies the persistent
excitation (PE) condition, as described below, the estimated
parameter vector θ̂[k] is updated by the algorithm below using
the RLS method with the L-sample rectangular window. In
the algorithm, P [k] is the covariance matrix, and P ′[k] is the
intermediate matrix. E[k] is the estimation error matrix with
Ej as the element.

θ̂[k] =θ̂[k − 1] + Projθ̂(E[k]) (9)

E[k] =P [k]ϕ[k]{y[k]− ϕT [k]θ̂[k − 1]}
−P [k]ϕ[k − L]{y[k − L]− ϕT [k − L]θ̂[k − 1]} (10)

P [k] =P ′[k]− P
′[k]ϕ[k − L]ϕT [k − L]P ′[k]

1 + ϕT [k − L]P ′[k]ϕ[k − L]
(11)

P ′[k] =P [k − 1] +
P [k − 1]ϕ[k − L]ϕT [k − L]P [k − 1]

1 + ϕT [k − L]P [k − 1]ϕ[k − L]
(12)

Projθ̂j (Ej) :=


0 if θ̂j [k − 1] ≥ θjmax & Ej > 0

0 if θ̂j [k − 1] ≤ θjmin & Ej < 0

Ej otherwise
(13)

When the PE condition is not satisfied, no update is performed
as P [k] = P [k − 1]. Besides, the range of the estimated pa-
rameters is specified by the Projθ̂ function, which guarantees
the minimum performance of the cutting force observer.

To design a regression model for the RLS method based
on the equation of motion of the unknown parameters JL,
BL and FCL with Eq. (1), Fcut is fundamentally unknown.
Therefore, we design a regression model focusing on the
frequency characteristics of the cutting force. Fig. 5 shows the
results of the frequency analysis of the estimated cutting force
in actual machining tests using the NVX5080 manufactured
by DMG MORI CO., LTD. Note that the design parameters
were applied to the cutting force observer to estimate the
cutting force in the test, so it is only used as a reference
value. Fig. 5 shows that the cutting force consists of a constant
component and high frequency components generated when
the rotating tool contacts the workpiece. According to the
above characteristics, it can be assumed that Fcut is constant
in the estimated interval L by filtering both sides of Eq.
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Fig. 6. Angular velocity of the system and identification difficulty of the
parameter (lager is easier).

(1) using an LPF QRLS(s) with low bandwidth. Based on
the assumption, a regression model, including the constant
component of the cutting force Fcut in the estimation interval
L, is shown below.

y = ϕTθ (14)

where y = QRLS(s)T̂s, ϕT = QRLS(s)[ω̇L, ωL, sgn(ωL), 1],
and θ = [JL, BL, FCL, F

DC
cut ]T . FDCcut corresponds to a con-

stant component of the cutting force Fcut and is used only for
parameter estimation. This redundancy allows us to estimate
model parameters under the condition which disturbance force
is applied. This regression model is based on the assumption
that the torsional torque Ts is robust to modeling errors in
previous studies [9].

Then the PE condition is considered. PE is a measure of
the degree of excitation of a signal. It is guaranteed that the
parameter identification converges to the actual value when
the input signal is appropriately excited. In order to identify
the PE condition of the state vector ϕ in proper behavior, the
time variation of the minimum eigenvalue of the matrix M [i]
defined in the following equation is shown as the magenta line
in Fig. 6.

M [i] =
1

L

i∑
l=i−L

ϕ[l]ϕ[l]T (15)

Eq. (15) is one method for calculating index of the PE in
[16], where L corresponds to the estimated window length
of the RLS. In Fig. 6, the PE condition is satisfied at the
angular velocity reversal (i.e., change in the sgn(ωL)). This
behavior is considered to depend on the separability condition
of FCL and FDCcut in the estimated parameters. However, it is
not practical to perform parameter identification only at speed
reversal because of the lack of identification opportunities.
Therefore, through a trial-and-error investigation, a condition
in which the angular acceleration ω̇L’s absolute value exceeds
a threshold value is adopted as the PE condition in this paper
instead of the strict PE condition. As a supplement to the above
discussion, the calculation given by Eq. (15) is not suitable for
online PE condition decisions because it is more advantageous
to treat the amount of state as an indicator of PE condition in

Motor Motor

Motor-Side Load-Sideweight

coupling
encoder

transmission
shaft

(a) Initial condition (w/o additional weight)

Motor-Side Load-Sideadditional weight

(b) Modified condition (w/ additional weight)

Fig. 7. Experimental setup w/ and w/o addtional weight on the load-side,
simulating inertia variation during machining.
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Fig. 8. Part of the trajectory of load-side angular velocity in experiment,
which repeated 30 sec.

TABLE II
EXPERIMENTAL CONDITIONS.

Sampling period ts 0.4 ms
20 bit encoder resolution q 2π/220 rad
Estimation length of RLS L 100 samples
Cutoff frequency of Q(s) 250 Hz
Cutoff frequency of QRLS(s) 12 Hz

terms of computational complexity and tuning of identification
conditions.

Using the load-side parameters estimated by the estimation
algorithms, the cutting force observer’s corresponding parame-
ters (JL, BL and FCL in this paper) are updated to accomplish
the adaptive cutting force observer shown in Fig. 3.

IV. EXPERIMENTAL VALIDATIONS

In order to verify the effectiveness of the proposed method,
a comparison was made between the proposal (Fig. 3) and the
conventional method (Fig. 4 without parameter update), which
is a cutting force observer consisting of robust torsional torque
estimation.

A. Experimental conditions

In the experiments, the effectiveness of the proposed method
is verified by switching the load-side parameter. First, the
estimated cutting force is compared between the proposed
method and the conventional method in the condition shown
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Fig. 9. Fcut estimation comparison (w/ and w/o additional weight).

in Fig. 7(a), where the observer parameters and the actual
parameters are identical. Second, similar comparisons are
made with changing the condition to that shown in Fig. 7(b),
where a weight is attached to the load-side motor, to reproduce
the inertia change. This simulates the mass change due to
switch in the workpiece and other factors. Note that the design
parameters of each observer were not changed through the
experiments.

The parameters in Table I, which obtained in the state of
Fig. 7(a) were used for observer parameter. This situation
corresponds to the machine tool with nothing on the stage. The
variances σJM , σBK

, σK , and σFDM
of the model parameters

for the robust torsional torque estimation mechanism are given
such that each parameter has the following errors in the ±3σ
interval.

JM : ±5 %, BM : ±50 %, K : ±30 %, FCM : ±50 %

The parameter estimation algorithm estimates parameters
within the ranges as follows [14].

JL ∈ (0.0,R), BL ∈ (0.0,R),

FCL ∈ (0.0,R), FDCcut ∈ R

These ranges should designed according to feasible bounds
such like machine specs. However, we approve all positive
number for the estimated parameters for further discussion.
Other settings, observer bandwidth, Etc., are summarized in
Table II.

In the experiment, a motor on the load-side was used
to apply a torque that simulates the cutting force, and the
estimated cutting force was acquired. The experimental system
implements a proportional–integral angular velocity control
system with a multiple root pole placement at 5 Hz using the
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Fig. 10. Fcut estimation error comparison in frequency domain.

TABLE III
ROOT MEAN SQUARE OF THE ESTIMATED ERRORS.

Prop. (adaptive) Conv. (fixed parameters)
w/o additional weight 1.950 1.964
w/ additional weight 1.187 1.532

nominal plant’s rigid body mode set as a controlled object.
The system’s angular velocity trajectory is shown in Fig.
8, assuming a reciprocating motion during machining. The
angular velocity command is repeated during each experiment.
The simulated cutting force is composed of a offset component
of 4 N and sinusoidal vibrations with amplitudes of 4 N at
frequencies of 100 Hz and 200 Hz. The simulated cutting force
is based on the actual cutting force shown in Fig. 5. These
experimental conditions are valid for the following reasons:
the contact frequency of the tool teeth becomes dominant in
heavy cutting [7], and even when an impulsive cutting force
appears, the gain and phase effect due to the plant resonance
can be removed by the cutting force estimation using encoders
on both the motor-side and load-sides, so that higher-order
harmonics can be estimated within the band of the Q(s) filter.

B. Experimental result

Fig. 9 shows The behavior of the cutting force estimations.
A comparison with the initial condition is shown in Fig.
9(a), and a comparison with additional weight is shown in
Fig. 9(b). There are no noticeable differences in Fig. 9(a),
while significant differences are found in Fig. 9(b). To discuss
these behavior, the frequency analyses of the estimation error
of F̂cut are shown in Fig. 10. It can be recognized that
cutting force was well estimated for both with the proposed
method (Prop.) and the conventional method (Conv.) in Fig.
10(a), where the observer parameters ware identical with
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Fig. 11. Parameter estimation by RLS algorithm (black line: w/o weight,
magenta line: w/ weight). JL was estimated more massive in the result with
the additional wight.

actual parameters. Then, estimation error of the conventional
method was significantly increased in Fig. 10(b), which was
a condition with an additional weight. This thought to be
caused by modeling error of JL. On the other hand, the
estimation accuracy of the proposal was as good as the one
without the weight. Table III summarizes the root mean square
(RMS) value of the estimation errors in each method in each
condition. The table also shows more significant error in the
conventional observer than the proposal when the observer
parameters have modeling errors.

Fig. 11 shows the model parameter identification during the
experiments. The black line indicates the transition of param-
eter identification in the initial condition, and the magenta
line indicates the one after weight attached. The identified
inertia ĴL was more massive than the weight was attached
in the comparison. The difference of ĴL identification was
2.92× 10−4 kgm2, which was almost equal to the actual
difference. From this result, we conclude the observer’s adap-
tation is carried out by the parameter identification and the
update algorithm. However, because the strict identification
condition is rarely maintained, the estimated parameters were
unstable at the beginning of the experiments and estimation
ripple won’t stop. The proposal algorithm improved accuracy
of the estimation, there is still room for further improvement.

V. CONCLUSION

This paper proposed an adaptive cutting force observer
which enable adaptation during the machining. The estimation

accuracy of the sensorless cutting force observer can easily
deteriorate by modeling error and parameter variation caused
by the removal process in cutting. The proposed method solves
the issue by identifying the stage parameters using the least-
squares method and sequentially updating the cutting force
observer using the acquired parameters. The effectiveness
of the proposed method was verified by comparing it with
the conventional cutting force observer in the experiments.
Future research subjects include considering the validity of
the identification conditions and implementation to the actual
machine tools.
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