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Abstract—The purpose of this paper is to estimate the linear
characteristics accurately by separating the nonlinear charac-
teristics from the time-series data that measures the frequency
response characteristics of the plant. In general, it has not been
easy to separate linear and nonlinear characteristics because
measurement data includes both of the characteristics. However,
it is possible to separate by assuming a model of nonlinear
characteristics, searching for parameters of the nonlinear model,
and estimating transfer function from the Frequency Response
Data (FRD) without the effect of the nonlinearity. We call this
method hybrid identification of time-series data and frequency
data since FRD is used to estimate the linear transfer function,
and time-series data is used to estimate the parameters of
nonlinear characteristics. Moreover, Bayesian optimization is
used as an efficient search method of the parameters of the
nonlinear model. The effectiveness of the proposed identification
method is verified by ball screw and rolling friction.

Index Terms—hybrid identification, rolling friction, Bayesian
optimization, linear characteristics, ball screw

I. INTRODUCTION

In recent years, industrial machines have become low-
rigidity for cost reduction, while operations speed and accu-
racy have been requested to improve for higher throughputs.
As a result, the servo controller adjustment has become more
complicated and, it has been more important to know and
utilize the machine’s characteristics in detail.

Therefore, researches on data-driven controller design [1]
have been conducted to adjust and design the controller
automatically. In particular, the automatic adjustment method
based on Frequency Response Data (FRD) [2], [3] is an
excellent and easy-to-use method because the controller’s
stability and the range of design parameters can be used as
constraints for controller design.

When utilizing the data-driven method, the accurate linear
characteristics of the machine are needed. However, it is not
easy to measure only the linear characteristics due to the
machine’s nonlinear characteristics. For the measurement of
nonlinear characteristics, different experiments with special
conditions must be done. These extra experiments are time-
consuming and are not desirable for machine users.

Fig. 1. Overview of the ball screw drive system
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Fig. 2. Schematic drawing of the ball screw drive system

Therefore, we proposed a novel method for estimating linear
characteristics accurately by separating nonlinear character-
istics from one time-series data when obtaining FRD. The
proposed method assumes that only the machine’s nonlinearity
model is known and makes it possible to separate the linearity
and the nonlinearity by searching for the nonlinear model’s
parameters and estimating transfer function from the FRD
without the effect of the nonlinearity. The effectiveness of the
proposed method is verified with a ball screw.

The nonlinearity assumed in this paper is rolling friction,
which is a common characteristic in ball screws. Rolling
friction is caused by the nonlinear elasticity of rolling elements
and coulomb friction [4]. It has been the subject of research for
a long time as a factor that deteriorates precision positioning
control [5], [6]. Various models such as the LuGre model [7]
and the Koizumi model [8] have been proposed to express
the nonlinear characteristics. In particular, in recent years,
a method for accurately expressing friction characteristics
using a rheology model [9], [10] has been proposed, and its978-1-7281-4442-9/21/$31.00 ©2021 IEEE



TABLE I
SPECIFICATIONS OF THE BALL SCREW DRIVE SYSTEM

Item Value Units
Weight of the load 6.0 kg

Inertia of the servomotor 1.39 ×10−5 kg·m2

Total inertia of the system 15.29 ×10−5 kg·m2

Rated torque 　 0.637 N·m

application to FF controllers [11], [12] has also been reported.
The study on simultaneous identification of the rolling friction
and the linear characteristics parameters [13] was conducted
by driving the ball screw with multiple low-frequency position
reference. The study on suppressing rolling friction with RPTC
(Repetitive Perfect Tracking Control) was conducted [14].
From the above, we use the rheology model as a nonlinear
model of the rolling friction.

The constitution of this paper is as follows. In section. II,
mechanism, and frequency characteristics of ball screw and
rolling friction characteristics are described. In section. III,
the proposed identification method of frequency characteristics
and nonlinear friction characteristics is explained. In section.
IV, for validation of the proposed method, a comparison result
with measurement and analysis of the proposed method is
illustrated. At last, in section. V, a summary of this paper,
and prospects of this research are shown.

II. MECHANISM AND DYNAMIC CHARACTERISTICS OF
BALL SCREW

A. Mechanism of ball screw drive system

A ball screw drive system in Fig.1 consists of a servomotor,
a servo driver, a ball screw, and a load. The servomotor and
servo driver are products of YASKAWA Electric corporation
products (model: SGM7A-02A7A and SGD7S-1R6A) with
a 24-bit encoder. The ball screw has a 20 mm lead (20
mm/rotation). The load is on the table, and its weight is 6
kg. Other specifications of the ball screw drive system are
shown in Table.I.

B. Frequency characteristics and rolling friction

Generally, the ball screw drive system’s rigidity is very high,
and it is very useful for precise positioning. However, there are
many fastening components and support components in Fig. 2:
bearing, coupling, nut, et cetera. These components cause the
ball screw to have multiple vibration modes. The vibration
modes make it difficult to adjust controller parameters and
deteriorate positioning accuracy. Therefore, we need to know
the frequency characteristics precisely.

However, the nonlinear friction often prevents from obtain-
ing the accurate frequency characteristics. Notably, it is known
that in the case of the ball screw drive system, rolling friction
reduces gain at low frequencies [5], [9]. The rolling friction
characteristics are shown in Fig. 3. The region1 is the pre-
rolling region where nonlinear elastic characteristics dominate.
The region2 is the rolling region where coulomb friction is
dominant. The frictional characteristics can be expressed as
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Fig. 3. Rolling friction characteristics
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Fig. 4. Nonlinear system including rolling friction and the linear character-
istics of the ball screw: P(s)

in (1)∼(2) with the rheology model [9], [15]. The rheology
model is the multi-structure.

xi =

{
x+ xri (|xi < Xmi|)
sgn(vm) ·Xmi (|xi > Xmi|)

(1)

Tfr = Kixi +Di
dxi

dt
(2)

The magnitude of rolling friction depends on the displace-
ment from the time of speed reversal. Since rolling friction
Tfr is added to the torque reference Tref as a disturbance,
the nonlinear system is expressed in (3), including the linear
characteristics of the ball screw. From (3), the actual input
torque to the ball screw is Tref − Tfr in Fig.4 [16], and it is
essential to estimate Tfr to identify the linear characteristics
of the ball screw accurately.

Vm(s) = P (s) · (Tref − Tfr) (3)

As shown in Fig.4, linearity and nonlinearity are represented
by different blocks. This modeling is called the block-oriented
model [17], [18], [19], and is the basic idea for separating
linearity and nonlinearity from the time-series data.

III. HYBRID IDENTIFICATION WITH TIME-SERIES DATA
AND FREQUENCY RESPONSE DATA

In this section, the proposed hybrid identification with time-
series data and frequency response data is explained. The
proposed method consists of six steps shown in Fig.5.

A. Flow of the proposed identification method

Step.1: Measurement of time-series input/output data
The excitation torque signal τref (t) is periodically inputted to
the plant ten times to acquire the output velocity data vm(t).
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Fig. 5. Flowchart of the proposed hybrid system identification

The input/output data is shown in Fig.6. The excitation signal
is a chirp signal in (4) and (5). The chirp signal is easy to
determine the frequency range which the user wants to excite.
The frequency range ωi(t) changes from 0.1 Hz to 400 Hz,
and the measurement time tmeas and the sampling period are
10 s, 125 µs, respectively. The initial frequency ω0 is 0.1 · 2π
rad/s, and the final frequency ω1 is 400 · 2π rad/s. The initial
phase of the signal ϕ0 is 0 deg. The signal amplitude A is
0.0764 N·m (12% of the rated motor torque), which value is
determined so that the motor rotation angle according to ten
input signals is less than one rotation. This is because large
movement may cause change of resonance frequency.

τref (t) = A · sin
(
ωi(t) · t+ ϕ0

)
(4)

ωi(t) = ω0 + (ω1 − ω0) ·
t

tmeas
(0 ≤ t ≤ tmeas) (5)

Step.2: Obtaining Frequency Response Data (FRD)
Fourier transform is applied to the time-series input/output
data τref (t)，vm(t) to acquire the FRD of the plant G(j · ω).
The obtained FRD is shown in Fig.7. The frequency resolution
is 0.1 Hz. The FRD is calculated from the time-series data
from 50 s to 100 s. The red dashed line in Fig.6 illustrates
50 s. The reason for not using the first half of the data is
that the output data at the beginning of the excitation may not
converge to steady states.
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Fig. 6. Measurement of torque reference τref (t) and motor velocity vm(t)
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Fig. 7. FRD of the ball screw (input: τref (t), output: vm(t))

Step.3: Estimating transfer function
The linear transfer function P̂ (s) is estimated by fitting for
the FRD G(j ·ω). The fitting method is based on least-squares
[20]. The numerator and denominator degree was set as 4 and
5 (n = 4,m = 5) because there is at least one vibration mode
from the FRD.

P̂ (s) =
bns

n + bn−1s
n−1 + · · · b0

sm + am−1sm−1 + · · ·+ a0
(6)

Step.4: Searching the nonlinear model’s parameters based
on Bayesian optimization
The approximate model of rolling friction Tfr(λ, t) is prepared
in (7)∼ (9) based on the rheology model in Fig.8. The model
parameters λ are searched from a search range Λ in Table.II
to match the time-series output data vm(t) and the simulated
output data v̂m(t) in (13). The search method of the nonlinear
model parameters is Bayesian optimization explained in III-C.

T̂fr =


Trev + sgn(vm(t)) ·K2 · xr (0 ≦ |xr| < X2)

Trev + sgn(vm(t)) · {T2 +K1(xr −X2)}
(X2 ≦ |xr| ≦ X1)

sgn(vm(t)) · T1 (X1 < |xr|)

(7)

K1 = (T1 − T2)/(X1 −X2) (8)
K2 = (T1 + T2)/X2 (9)



TABLE II
SEARCH RANGE Λ OF ROLLING FRICTION PARAMETERS

Symbol Min Max Unit
X1 50 150 µm
X2 10 49 µm
T1 2.55×10−2 (4.0) 6.37×10−2 (10.0) N·m(%)
T2 6.37×10−3 (1.0) 2.48×10−2 (3.9) N·m(%)
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Fig. 8. Approximate model of the rolling friction

In the above, Trev is the torque value when velocity reversal.
K1 and K2 are elastic coefficients in the divided region.

T̂input = Tref − T̂fr (10)

v̂m = P̂ (s) · T̂input (11)

verr =

ℓ∑
i=1

||vm(i)− v̂m(i))||2 (12)

λ∗ = arg min
λ∈Λ

verr (13)

λ = [X1, X2, T1, T2] (14)

Step.5: Simulating output data and FRD based on the
estimated transfer function and nonlinear model
To verify the estimation results, output data v̂m(t) is generated
from (11) in Step.3. Simulated FRD: Gsim(j ·ω) is produced
from τref (t) and v̂m(t). If Gsim(j · ω) is close enough to
G(j · ω), the identification process is terminated. If it cannot
be reproduced, perform Step.6.
Step.6: Calculating input/output data without effect of the
nonlinear model and recalculating the frequency data
After removing the nonlinear model’s influence from the time-
series input/output data, the FRD is regenerated from (15) and
(16). The linear transfer function P̂ (s) is estimated from the
regenerated FRD Ĝ(j · ω) again in Step.3.

T̂input = Tref − T̂fr (15)

Ĝ(j · ω) = Vm

T̂input

(16)

B. Convergence of the estimated results

To guarantee the convergence of the estimated results, the
velocity error at k time verr[k] is saved. Among the error up
to the kth time, the minimum velocity error is the best value

written asJbest. If the k + 1 th velocity error verr[k + 1] is
less than Jbest, G(j · ω) is replaced by Ĝ(j · ω) in Step.3.

Jbest = min{verr[N ], N = 1, 2, · · · , k} (17)

C. Bayesian optimization: a search method for parameters of
nonlinear model

Bayesian optimization is one of the optimization methods
for the black-box optimization problem whose objective func-
tion is unknown. The representative black-box optimization
problem is the hyperparameter search of Neural Networks or
Support Vector Machine [21]. Commonly, the random search
and the grid search have been used, but Bayesian optimization
has been focused as a more efficient search method based on
the Gaussian process. In recent years, not only in the field of
machine learning but also in the field of control engineering,
the application of Bayesian optimization was reported for
parameter tuning of the controller in the nonlinear system [22].

Bayesian optimization is expressed in (18) ∼ (21). A vector
of hyperparameters is denoted by λ ∈ Λ. The objective func-
tion is denoted by L(λ). The expected improvement in (20)
and (21) is used as the acquisition function. The improvement
of at the combination of the parameters λ is expressed in (19).

λ∗ = arg min
λ∈Λ

L(λ) (18)

I(λ) = max(fmin − y, 0) (19)
E[I(λ)] = E[max(fmin − y, 0)] (20)

E[I(λ)] = (fmin − µ(λ))Φ

(
fmin − µ(λ)

σ

)
+ σϕ

(
fmin − µ(λ)

σ

)
(21)

In the above, ϕ and Φ are the standard normal density and
distribution function. The symbol µ, σ and fmin express the
current best value respectively.

IV. EXPERIMENT FOR VALIDIATION

A. Measurement condition of rolling friction
We obtained the measurement of rolling friction. Position

and torque reference was measured when the motor was driven
with triangle four position reference: 50 µm, 100 µm, 200 µm,
and 400 µm. The position reference is in a periodic triangle
shape with a frequency of 0.33 Hz. The measurement in the
case of 200 µm is shown in Fig. 9.

The friction torque Tfr was calculated from the position xm

and torque reference Tref in (22). In this equation, the torque
generated by acceleration and deceleration is removed from
the torque reference, and the remaining value is calculated as
friction torque. The low pass filter is used for withdrawing
the noise, and its cutoff frequency is set as 10 × 2π rad/s.
The cutoff frequency is higher enough than the frequency of
position reference: 0.33 Hz.

Tfr =

(
Tref − Jall · xm · s2

)
· ωlpf

s+ ωlpf
(22)
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Fig. 9. Measument of position and friction torque in the case of 400 µm
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Fig. 10. Measurement of rolling friction (blue: displacement 400 µm, gray:
displacement 200 µm, and green: displacement 100 µm, purple: displacement
50 µm, and red dashed: the analysis result of nonlinear model)

B. Measurement result of rolling friction

The measurement result of rolling friction is shown in
Fig.10. The maximum friction value is 2.74× 10−2 N·m (4.3
% of the rated motor torque). The pre-rolling region is less
than 50 µm. The rolling region seems to be more than 200
µm.

C. Comparison for analysis result and measurement

The analysis results of linear characteristics and nonlinear
friction are shown in Table.III, IV, and (23).

1) Rolling friction: The maximum value of the rolling
friction is 2.87× 10−2 N·m (4.5% of the motor rated torque),
that is close to the measurement result: 2.74×10−2 N·m (4.3%
of the motor rated torque). The region1 is very narrow and
has a displacement of 10 µm, while region2 is in the range of
about 90 µm.

2) Linear characteristics of the ball screw: We obtained
the transfer function P̂ (s) in (23) and Table.IV.The estimated
transfer function P̂ (s) has an oscillation mode(anti-resonance
frequency: 97.0 Hz and resonance frequency: 208.1 Hz), and
matches the frequency response data well from Fig. 11. While
at the low frequency band the gain of the trasfer function

TABLE III
ANALYSIS RESULTS OF ROLLING FRICTION

Symbol Analysis value Unit
X1 193 µm
X2 30 µm
T1 2.87×10−2 (4.5) N·m (%)
T2 1.40×10−2 (2.2) N·m (%)

TABLE IV
ANALYSIS RESULTS OF FREQUENCY CHARACTERISTICS

Symbol Value Symbol Value Unit
ωr1 208.1 ×2π ωr2 340.5 ×2π rad/s
ζr1 4.56× 10−2 ζr2 0.623 -
ωa1 97.0 ×2π ωa2 291.3 ×2π rad/s
ζa1 7.17× 10−2 ζa2 0.329 -
K 3.38×104 - - -

P̂ (s) is higher than the experiment data (FRD), the result of
removing the influence of rolling friction can be confirmed.

P̂ (s) =
K

s(s+ 8.725)
·

2∏
i=1

s2 + 2ζaiωais+ ω2
ai

s2 + 2ζriωris+ ω2
ri

(23)

3) Frequency response data of the ball screw: The fre-
quency response data was reproduced in Fig.11 to confirm
that the combination of the estimated transfer function and the
analyzed nonlinear model is appropriate. It was confirmed that
the reproduced FRD (a blue line in Fig.11) accurately matched
the experimental data (a black line in Fig.11). In particular, at
the low frequency band (0.1 ∼ 2.0 Hz), the error of both data
is less than 1 dB for gain and 5 deg for phase.

4) Convergence of the velocity error: To confirm the con-
vergence of the estimated results, the velocity error verr is
shown in Fig.13. The horizontal axis shows the number of
times the estimation flow was executed. The blue line shows
verr at each time, and the green line shows the best value
Jbest up to the current time. From Fig.13, it can be confirmed
that the best value of the estimated results is converged.

V. CONCLUSION

This paper proposed the hybrid identification method with
time-series data and frequency response data for obtaining the
precise linear characteristics of the plant and nonlinear friction
characteristics. For validation for the proposed method, we
conducted the measurement of rolling friction and frequency
response data of the ball screw, and the proposed method’s
analysis results were compared with measurement. As a result,
low-frequency characteristics are improved, and rolling fric-
tion characteristics match the measurement and the analysis
results. Moreover, Bayesian optimization was used for an
efficient search method of the nonlinear model’s parameters,
and we obtained the appropriate value which matched the
measurement.

We have planned to automatically adjust the position con-
troller with obtained linear characteristics and the friction
model and parameters. We aim to realize data-driven high
precision control.
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