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Abstract—This paper proposes a localization method by esti-
mating the slip ratio of wheeled mobile robots. The slip ratio
estimator is designed based on the equations of motion. Input
torque and encoders data are used, and driving force, vehicle
velocity, and slip rate are estimated. This method can estimate
the robot’s position accurately without visual odometry (VO)
when the driving resistance is obtained. When VO is available,
even if the obtained driving resistance is different from its true
value, instantaneous speed observer updates the resistance and
the robot’s velocity. The sampling time of torque is very short,
which allows us to obtain position estimation much faster than
VO. The experiments were conducted with a robot on alumina
balls, and the proposed methods showed improvements in the
accuracy of localization compared to wheel odometry.

Index Terms—localization, wheeled robots, field robotics

Superscript

i ∈ l, r Wheel number (l: left, r: right)

Variables

V Robot’s longitudinal velocity
Fdr Driving resistance
N i Nominal reaction force on wheel i
F i
x Driving force of wheel i

λi Slip ratio of wheel i
µi Friction coefficient at wheel i
ωi Angular velocity of motor side of wheel i
ω̇i Angular acceleration of motor side of wheel i
T i Motor torque of wheel i
V i
ω Velocity of wheel i

I. INTRODUCTION

Wheeled mobile robots (WMRs) are used in various sit-
uations, including planetary explorations, disaster sites, and
delivery services. They also show improvements in a power-
assisted mode for human-friendly mobile carts [1]. Real-time
localization of WMRs is important to explore unknown, non-
homogeneous terrain safely and efficiently. Inertial measure-
ment unit (IMU), wheel odometry (WO), and visual odometry
(VO) have been utilized for the localization.

In planetary exploration, NASA’s Mars rovers have em-
ployed similar localization methods: WO measures the dis-
tance the rover traversed from the encoders, and IMU provides
tilt estimates and attitudes [2]. WO is inexpensive, accurate in

Fig. 1: Wheeled mobile robot

short-term, and obtained at very high sampling rates [3]. In
the Mars Exploration Rover (MER) mission, when a rover
ran at the flat ground for 2 km, the accumulated error was
only 3% [4]. However, WO suffers from errors due to wheel
slip on uneven terrains and slippery surfaces [5]. To tackle the
errors, VO is used on WMRs. It is the vision-based method and
has been heavily used on WMRs including Mars rovers [6].
Although VO works well, errors still exist as cameras cannot
see well in dark places or feature-less terrains and can cause
feature matching to fail. For real-time slip ratio estimation
and control, VO is not suitable [7] for its low sampling rate
compared to internal sensors such as encoders and IMUs.

There has been a large amount of work to estimate the slip
ratio of WMRs. [8] and [9] fused acceleration sensors, gyros,
and encoders in extended Kalman filter. For the slip ratio
estimation of skid-steered mobile robots, non-linear sliding
mode observer was used in [10] and IMU-based nonlinear
Kalman filter was presented in [11]. [12] proposed estimating
slip using motor current, IMU, encoders, and potentiometers,
but it needs some calibration movements when no absolute
positioning system is available. This paper is different from
these conventional methods in that it does not use IMU. Ter-
ramechanics have worked on slip ratio estimation by making
models of the ground and the wheel [13], [14]. However, soil
parameters need to be known to use terramechanics models.
Current research tries to estimate the parameters, but that
method needs heavy computation [15].

This paper proposes a new localization method by estimat-
ing slip ratio from the input torque and the motors’ encoders on
the wheels. It is model-based and derives the motion equations
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Fig. 2: Robot model.

TABLE I: PLANT MODEL PARAMETERS

Description Symbol Value

Inertia from motor side J 4.8× 10−6 kgm2

Viscous coefficient from motor side B 6.3× 10−5 Ns/m2

Coulomb friction Tfr 2.3× 10−2 Nm
Wheel radius r 5.0× 10−2 m
Gear ratio G 31
Robot mass M 30.6 kg

of the WMR. This method is robust to the noise because it
does not integrate the acceleration from the IMU, which would
contain large offsets. The driving force is estimated from the
disturbance observer [16], and the robot velocity is calculated
with the angular velocity of the encoders and the input torque.

The slip ratio estimator was first developed on electric
vehicles (EVs) with in-wheel motors by [17], [18] and used
for the driving force control of EVs [19], [20]. It is much
less computationally demanding than VO and will be useful
for robots with limited processing. Since the torque response
of motors is short – a few milliseconds, the slip ratio can be
obtained at much higher rates than VO. The proposed method
improves the localization accuracy while driving between
keyframes or waypoints. The estimated slip will be helpful
for real-time slip control and could potentially be used for
WMRs running in the darkness or feature-less terrains where
VO is not available if the value of the driving resistance is
known with some accuracy.

The rest of this paper is organized as follows: In Section II,
the model of the WMR is described. The estimation method is
presented in Section III. Fusion of slip ratio estimator and VO
using instantaneous speed observer is proposed in Section IV.
Experiments are described in Section V. Section VI concludes
this paper.

r/G

V iω−V
max(V iω,V,ε)

N i µi λi
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Fig. 3: Block diagram of the plant.

II. DYNAMIC MODEL OF ROBOT

Fig. 2 shows the wheels and the body model and their
longitudinal motion is described as

Jω̇i = T i − (r/G)F i
x −Bωi − Tfr, (1)

MV̇ = ΣF i
x − Fdr, (2)

V i
ω = (r/G)ωi. (3)

Plant model parameters are shown in Table I. Driving resis-
tance Fdr is mainly composed of a constant value, the rolling
resistance. Since WMRs run at very lower speed than vehicles,
air resistance is neglected. Fdr also includes modeling errors
such as forces resulted from the complicated wheel contact
with the terrain and the transmission efficiency of motor gears.
Equation (1) considers viscous friction and Coulomb friction,
which were minor and neglected for slip ratio estimation for
EVs [17], [18]. On WMRs, these terms should be taken into
account for their small mass and torque compared to EVs. The
slip ratio λi is defined as

λi =
V i
ω − V

max(V i
ω, V, ϵ)

. (4)

ϵ is the minute value to avoid zero denominator. In this paper,
the robot is running straight, and the driving force is described
as

F i
x = µiN i. (5)

The block diagram of the plant is presented in Fig. 3. The
driving force F i

x is estimated using driving force observer
(DFO) [16] shown in Fig. 4, which is derived from (1). T
and ω are low-pass filtered so that they are in the same phase
with ω̇.

III. SLIP RATIO ESTIMATION METHOD

In the Subsections III-A and III-B, the slip ratio estimator
for acceleration mode [17] and deceleration [18] mode is
presented, respectively. These two modes are switched by
looking at the value of max(Vω, V, ϵ) in (4).
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Fig. 4: The diagram of DFO. θi is the angle obtained from
the encoder. τ = 10ms.

A. Acceleration Mode (max(Vω, V, ϵ) = Vω)

The slip ratio estimation for acceleration mode was pro-
posed by [17]. In this mode, max(Vω, V, ϵ) = Vω . By
differentiating (4) and using (1), the differential equation of λ
is obtained as follow:

λ̇ = (1− λ)
ω̇

ω
− 1

M(r/G)ω
(ΣF i

x − Fdr) (6)

The slip ratio estimator is designed by putting hats, which
mean estimated values, on the unmeasured terms ΣF i

x and
Fdr in (6):

˙̂
λ = (1− λ̂)

ω̇

ω
− 1

M(r/G)ω
(ΣF̂ i

x − F̂dr) (7)

F̂ i
x is obtained from DFO. F̂dr contains not only driving

resistance but also modeling errors or disturbances.
When λ̂i converges, the estimation error defined as (8) will

also converge.
ei = λi − λ̂i. (8)

By subtracting (7) from (6), the differential equation of ei is
obtained:

ėi = − ω̇i

ωi
ei +

Fdr − F̂dr

(r/G)Mωi
. (9)

If Fdr = F̂dr and
ω̇i

ωi
> 0, the estimation error will converge

to zero. When Fdr ̸= F̂dr and
ω̇i

ωi
> 0, ei will converge to a

non-zero value. The estimated robot velocity is calculated by

V̂ = (1− λ̂i)V i
ω. (10)

B. Deceleration Mode (max(Vω, V, ϵ) = V )

The slip ratio estimation for deceleration mode was pro-
posed by [18]. When the robot is braking, max(Vω, V, ϵ) = V .
The robot does not have mechanical brakes and stops by
velocity control. By differentiating (4) and using (2), (11) is
obtained.

λ̇ = (1 + λ)
ω̇

ω
− (1 + λ)2

M(r/G)ω
(ΣF i

x − Fdr). (11)

Based on (11), the slip ratio estimator for deceleration mode
is designed:

˙̂
λ = (1 + λ̂)

ω̇

ω
− (1 + λ̂)2

M(r/G)ω
(ΣF̂ i

x − F̂dr). (12)

By subtracting (12) from (11), the differential equation of ei

is obtained:

ėi =

{
ω̇i

ωi
−
(
ΣF i

x − Fdr

M(r/G)ωi

)
(λi + λ̂i + 2)

}
ei. (13)

Using V̇ i
ω, V

i
ω , and V̇ , (13) can also be written as

ėi =

(
V̇ i
ω

V i
ω

− V̇

V i
ω

(2 + λi + λ̂i)

)
ei. (14)

The error ei will converge if V̇ i
ω − V̇ i(2 + λi + λ̂i) < 0. The

estimated robot velocity is calculated by

V̂ =
V i
ω

(1 + λ̂i)
. (15)

IV. UPDATES OF DRIVING RESISTANCE, VELOCITY, AND
POSITION BY INSTANTANEOUS SPEED OBSERVER

VO is implemented in most current wheeled robots. In
order to estimate the position more accurately with VO, the
authors propose a method using instantaneous speed observer
[21]. The instantaneous speed observer is a method that,
when different sensor values are obtained at different sampling
times T1, T2 (T1 > T2), updates an estimator running every
T2 with the information obtained every T1. In this case,
position estimation from VO is obtained every T1 = 1 s, and
the slip ratio estimator described in Section III is running
every T2 = 1ms. This time, the slip ratio estimator (Section
III) is run assuming that the driving resistance is a known
constant value. However, even if the value is different from
the actual one, an approximate value can be obtained from this
instantaneous speed observer. Once the approximate value is
known, the slip ratio estimator will converge based on (9),
(14). and follow the true value even as the driving resistance
changes.

If T1/T2 = K, time t is expressed as t = mT1 + kT2(1 ≤
k ≤ K, m, k ∈ Z) denoted by [m, k]. At the short sampling
point T2, the slip rate and position are estimated as follows:

λ̂[m, k] = λ̂[m, k − 1] +
T2

2
(
˙̂
λ[m, k] +

˙̂
λ[m, k − 1]), (16)

x̂[m, k] = x̂[m, k − 1] +
T2

2
(V̂ [m, k] + V̂ [m, k − 1]). (17)

At the long sampling point T1, the position information xVO

is obtained from VO with good accuracy. ∆x, the difference
between xVO and x̂[m, k] is calculated every T1. We consider
that ∆x is caused by two factors: ∆V , the initial error of the
robot’s velocity at the start of the estimation in the interval
of T1, and ∆Fdr, the error of the driving resistance assumed
in that interval. The causes of ∆x are distributed to these
variables in the ratio γ1 and γ2 (γ1 + γ2 = 1), respectively.

γ1∆x = T1∆V, (18)

γ1∆x = − T 2
1

2M
∆Fdr. (19)
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every T2 =1msEq.(7), (12) Eq.(10), (15)

+
−

xVO

F̂dr

∆x

Instantaneous Speed Observer

Eq.(22) Eq.(23) Eq.(24)

Estimation B

Estimation A

Fig. 5: The overview of the whole system. Slip is estimated from encoder data, torque command, and driving resistance
model. Instantaneous speed observer updates V̂ and Fdr every T2. Green part and red part were used in Estimation A and B,
respectively.

These equations give the amount of correction in the next
interval as follows:

∆V =
1

T1
γ1∆x, (20)

∆Fdr = −2M

T 2
1

γ2∆x. (21)

F̂dr[m+ 1] and V̂ [m+ 1, 0] are updated as follows:

F̂dr[m+ 1] = F̂dr[m]−∆Fdr, (22)

V̂ [m+ 1, 0] = V̂ [m,K]−∆V − T1

M
∆Fdr. (23)

λ̂[m+1, 0] is also updated from (23) using (4). The estimated
position from slip ratio estimator is updated to xVO at sam-
pling rate T1 and described as

x̂[m+ 1, 0] = xVO[m+ 1]. (24)

The convergence condition is determined from the following
matrix [21]:(

1 T1

M
0 1

)(
I −

(
T1 0

0
T 2
1

2M

)−1(
γ1
γ2

)(
T1

T 2
1

2M

))

=

(
−γ2

T1

2M (2− γ1 − 2γ2)
− 2M

T1
γ2 γ1

)
. (25)

I is unit matrix. If the eigenvalues of the matrix (25) are
within unit circle in the discrete-time system, the observer
will converge. As for this system, any γ1 and γ2 (0 < γ1 <
1, 0 < γ2 < 1, γ1 + γ2 = 1) meets this condition.

When this observer updates variables every T1, the values
in (9) and (14) also change and ei restarts converging. These
two differential describe the dynamics within T1. Therefore,
the convergence condition for slip ratio estimator (9),(14) and
that for instantaneous speed observer (25) will not conflict to
each other.

Fig. 6: Robot wheels

The block diagram of the whole localization system is
represented in Fig. 5.

V. EXPERIMENTS

The WMR presented in Fig. 1 was used to validate the
proposed methods. The robot has two driving wheels in front
and one undriven wheel in the rear as shown in Fig. 6. The
undriven wheel is assumed not to slip, and the true velocity of
the robot is obtained from the undriven wheel’s velocity. Table
I presents the robot’s physical parameters. The resolution of
the encoder is 14 bit. The two driving wheels ran on alumina
balls whose diameters are 2mm. The undriven wheel ran on
the boards so that it would smoothly rotate without making a
slip.

The wheels’ motor were controlled with their velocity
feedback. The cutoff frequency for the pseudo differential
of encoder data was 500 rad/s (τ = 2ms). The PI gains
Kp,Ki were set so that the pole of the speed feedback was
ωc = 10 rad/s. The cutoff frequency of pseudo differential
to calculate ω and ω̇ for the input of slip ratio estimator was
100 rad/s (τ = 10ms).

In this experiment, the robot running at 0.1m/s accelerated
suddenly, making a big slip. When the robot was braked,
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Fig. 7: Estimation A. Only slip ratio estimator (SRE) with the accurate average value of driving resistance (F̂dr = 16N). The
green region in Fig. 5.

0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

(a) Velocity.

0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

(b) Slip ratio.

0 0.5 1 1.5 2 2.5 3

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(c) Position error.

0 0.5 1 1.5 2 2.5 3

5

10

15

20

25

30

(d) Driving resistance.

Fig. 8: Estimation A. Only slip ratio estimator (SRE) worked with inaccurate driving resistance (F̂dr = 14N). The green region
in Fig. 5.
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Fig. 9: Estimation B. The hybrid of slip ratio estimation (SRE) and VO by instantaneous speed observer using driving resistance
with initial error (F̂dr0 = 14N). The red region in Fig. 5.

it slipped again, and the slip rate was negative. Slip ratio
estimator started at Vω = 0.15m/s. Even if the estimator starts
at different velocity, the slip ratio estimator will converge by
(9),(14).

Two kinds of estimation were conducted. The first method
is slip ratio estimator (Section III), which is depicted as red
region in Fig. 5. We name this method as Estimation A.
The results of this method are stated in Section V-A. The
other method uses both slip ratio estimator (Section III) and
instantaneous speed observer (Section IV), which is depicted
as green region in Fig. 5. We name this method as Estimation
B. The results of this method are stated in Section V-B.

A. Slip Ratio Estimator with constant Fdr (Estimation A)

In this estimation, VO information was not available, and
only slip ratio estimator was used. The driving resistance was
assumed to be constant.

First, Estimation A was conducted with a constant value of
F̂dr = 16N and the results are shown in Fig. 7. The average
value of the driving resistance was known accurately as shown
in Fig. 7d. The robot’s position was estimated very accurately
compared to WO plotted with red lines even without VO.

Next, Estimation A was conducted with F̂dr = 14N, a slight
deviation from the true average value of 16N. The results are
shown in Fig. 8. From Fig. 8c, the position error of Estimation
A (blue line) was smaller than that of WO (red line), but it
accumulatd errors continuously.
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B. Slip Ratio Estimator and Instantaneous Speed Observer
with inaccurate initial value Fdr0 (Estimation B)

In this subsection, VO was fused with slip ratio estimator
by instantaneous speed observer to minimize the position error
caused by the deviation of driving resistance. The initial value
of driving resistance F̂dr0 was 14N, and γ1 and γ2 were both
set to 0.5. The estimation results are shown in Fig. 9. Every
T1 = 1 s, instantaneous speed observer updated V̂ and F̂dr,
and estimated values changed at the same time. From Fig. 9d,
the driving resistance approached its true average value.

VI. CONCLUSION

This paper proposed localization of WMRs by estimating
slip ratio from proprioceptive information such as encoders
and input torque. From the equation of motion, differential
equations for estimating slip rates are obtained. Even if there is
a little error in the driving resistance value, the equations will
converge. This method allowed us to obtain better accuracy
than WO. We also proposed a method of using an instanta-
neous speed observer to fuse slip ratio estimator with VO. In
the instantaneous speed observer, the causes of position error
are considered the errors of estimated velocity and driving
resistance. These two terms are updated every time VO is
obtained.

VO is essentially blind driving between waypoints or
keyframes. Therefore, with the proposed method, position
estimation is obtained with high accuracy and much faster than
the VO. The proposed methods can reduce the dependence on
VO for robots with limited computation or as a backup.

As future work, lateral slip could be estimated by formu-
lating the motion equations in the lateral direction.
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