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Minimum-Variance Load-Side External Torque Estimation Robust
Against Modeling and Measurement Errors

Shota Yamada∗a) Student Member, Hiroshi Fujimoto∗ Senior Member

Sensorless external torque estimation is important for industrial applications. The load-side torque in a two-inertia
system with a load-side encoder can be estimated by using either of the two observers that present different levels of
robustness against modeling and measurement errors on the motor side and transmission part. By combining these
observers, we propose a load-side external torque observer with high estimation accuracy even under modeling and
measurement errors. Analyses of the observer with and without a joint torque sensor unveil the advantages and limita-
tions of applying a joint torque sensor for external torque estimation. In addition, we derive a systematic design method
for the proposed observers to minimize the estimation variance by considering the variance of the plant parameters and
sensor measurements. The advantages of the proposed method are evaluated through simulations and experiments.
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1. Introduction

Accurate force/torque detection is gathering notable re-
search interest [1]. For example, Yamada et al. [2] esti-
mate the cutting force for monitoring a machining process,
whereas Ohba et al. [3] estimate the force to control an injec-
tion molding machine, and Katsura et al. [4] and Mitsantisuk
et al. [5] estimate contact forces for control considering ex-
ternal environments. Likewise, force estimation is required
to enable haptic applications [6–8].

The high cost of force/torque sensors and their induced re-
duction of resonance frequency of controlled systems make
the use of sensorless force/torque estimation a promising al-
ternative [9]. One of the most widely used sensorless estima-
tion methods is the reaction force observer proposed in [10].
However, its estimation performance is degraded when a
rigid body model is applied to resonant plants such as geared
robots and ball-screw stages of machine tools [2]. Accurate
force/torque estimation requires the careful consideration of
resonant dynamics.

A plant with a resonant mode can be modeled as a two-
inertia system [11], as illustrated in the block diagram of
Fig. 1(a), and whose variables are defined in Table 1. Sub-
scripts M and L denote the motor and load, respectively. For
motion control with external environment interaction, exter-
nal torque dL and not joint torque Ts should be estimated, as
the latter can be measured using joint torque sensors. Load-
side inertia moment JL and viscosity DL should be considered
for external torque estimation even when using joint torque
sensors. Since a lot of torque sensors with high bandwidth
are recently applied to cooperative robots (see e.g., [12]), we
consider load-side external torque estimation in both cases
where the system has a joint torque sensor or no joint torque
sensor.
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Table 1. Definition of plant parameters variables.

Inertia moment J Motor torque TM

Viscosity coefficient D External torque dL

Torsional rigidity K Joint torque Ts

Angular velocity ω Torsional angle θs

Motor-side disturbance dM

Recently, machine tools are equipped with linear encoders
to obtain precise positioning at the load side even under non-
linearity and resonance in ball-screw mechanisms. Likewise,
we expect an increasing adoption of load-side encoders in
robotics and various industrial devices. In fact, we have pro-
posed and evaluated a novel structure for industrial robots
with load-side encoders [13]. Therefore, the estimation
method using load-side encoder information is applicable to
industrial devices, and the proposal of the effective estimation
method is highly required.

For accurate estimation in two-inertia systems, two kinds
of load-side external torque observers using load-side infor-
mation are proposed. Matsuoka et al. [14] propose the arm
disturbance observer that relies on load-side accelerometers.
The difference between torque observer and disturbance ob-
server depends on whether friction is subtracted from the out-
put, as the latter observer compensates disturbance including
friction. In this paper, we focus on accurate torque estimation
without friction. Suzuki et al. [15] propose another observer
using a position sensitive device to measure the torsional an-
gle. In both observers, load-side external torque dL is es-
timated from joint torque Ts and the torque obtained by an
inverse load-side model and load-side velocity as follows:

d̂L = (JLns + DLn)ωL − Ts, (1)

where n and ˆ indicate nominal and estimated variables, re-
spectively. The observers differ in the estimation of joint
torque Ts. In [14], joint torque T̂sM is estimated from the
motor-side dynamics and encoder using the law of action and
reaction as follows:
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(a) Block diagram of a two-inertia system.
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(b) Frequency responses from the motor torque to the motor
angle.
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(c) Frequency responses from the motor torque to the load an-
gle.

Fig. 1. Block diagram and frequency responses of the two-inertia system motor bench.

T̂sM = (JMns + DMn)ωM − TM − dM . (2)

Motor torque TM is measurable by a current sensor and con-
sidering motor disturbance dM , which mainly comprises the
motor-side friction that can be measured beforehand. We call
this approach motor-side estimation as it uses the motor-side
dynamics. On the other hand, in [15], joint torque T̂sK is es-
timated from torsional information as follows:

T̂sK = θsKn. (3)

where torsional angle θs can be measured using both the
motor-side and load-side encoders or a position sensitive de-
vice. This approach avoids the friction modeling error of
(DMn · ωM) and dM in (2). However, the value of T̂sK can be
deteriorated by the modeling error of torsional rigidity and
nonlinearities in transmission mechanisms [16]. We call this
approach transmission-part estimation. Nonlinearities exist
in transmission mechanisms, but we unmodel the nonlinear-
ities given their diversity and complexity [17, 18]. Instead,
our proposed observer can mitigate the influence of nonlin-
earities. In conventional studies, either of the two estimation
methods are selected depending on the system. For instance,
in series elastic actuators equipped with well-identified lin-
ear springs, transmission-part estimation is preferred [19,20].
Also, when the system has a joint torque sensor, the joint
torque can be obtained with robustness against modeling er-
rors but sensitivity to measurement noise. We denote the joint
torque obtained from a sensor as TsS and call the load-side
external torque estimation using this measurement as torque-
sensor-based estimation.

We propose accurate load-side external torque estimation
that is robust against modeling and measurement errors by
combining the estimation methods proposed in [14] and [15],
specifically the estimated T̂sM , T̂sK , and TsS considering the
availability of a joint torque sensor. Such combination is not
novel, as Mitsantisuk et al. [21] use both methods for es-
timation, by calling the equation (2) multi-encoder distur-
bance observer and the equation (3) load-side disturbance
observer. However, they define these observers for identi-
fication of the torsional rigidity by comparing their estimated
values, assuming that the multi-encoder disturbance observer
returns the true value. Likewise, both methods are combined
in other approach by employing different frequency ranges
to enhance the estimation bandwidth [22]. We introduce
novel gains determining the ratio between the motor-side es-

Drive-side motorLoad-side motor

Flexible joint

Joint torque sensor

Fig. 2. Outlook of the two-inertia system motor bench.

Table 2. Parameters of the two-inertia system motor
bench.

Motor-side inertia moment JM 1.03e-3 kg· m2

Motor-side viscosity coefficient DM 8.00e-3 N·m·s/rad
Torsional rigidity K 99.0 N·m/rad
Load-side inertia moment JL 8.70e-4 kg·m2

Load-side viscosity coefficient DL 1.71e-3 N·m·s/rad

timation and the transmission-part estimations and the joint
torque by the torque sensor in the same frequency range to
improve the robustness against modeling and measurement
errors. Although these gains can be manually adjusted, we
derive a systematic design method for the gains to minimize
the variance of the estimated load-side external torque.

The main contributions of this study are threefold:

( 1 ) robustness enhancement of load-side external torque es-
timation against modeling and measurement errors by
considering the balance among these errors from the mo-
tor side, transmission part, and torque sensor;

( 2 ) systematic design of the gains determining the balance
for minimum variance estimation;

( 3 ) performance evaluation through simulations and experi-
ments.

This study extends previous developments [23–25] by
added discussion and improved experimental results. The re-
maining of this paper is organized as follows. The experi-
mental setup is described in section 2. In section 3, the pro-
posed observer is detailed. In section 4, the systematic design
for the gains to enhance robustness is proposed, and the vari-
ance minimization of the estimated load-side external torque
is determined. The performance of the proposed method is
analyzed through simulations and experiments in sections 3
and 4. Finally, we draw conclusions in section 5.

2. Experimental setup
A motor bench with a low-stiffness joint between two mo-
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torque sensor.
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(b) The proposd load-side external torque observer with a joint torque
sensor.

Fig. 3. Block diagrams of the proposed load-side external torque observers with/without a joint torque sensor.

tors is used as two-inertia system for this study by adopting
the setup shown in Fig. 2. Its angular velocities can be accu-
rately measured with 20-bit high-resolution encoders on both
the motor and load sides. A flexible joint between the motor
and load is inserted to reduce the torsional rigidity.

We implement the controllers on a digital signal proces-
sor. The sampling frequency of the proportional–integral
current control loop is 10 kHz with an experimentally deter-
mined bandwidth of 1.2 kHz. The motor torque is measured
by a previously determined torque constant value, Kt=0.172
N·m/A, multiplied by the measured current obtained from a
sensor.

We measure the frequency response by feeding chirp sig-
nals as current reference. The responses from the motor
torque to the motor angle and from the motor torque to the
load angle are shown in Figs. 1(b) and 1(c), respectively. The
responses verify that the experimental setup can be modeled
as a two-inertia system whose antiresonance and resonance
frequencies are 57 and 71 Hz, respectively. The resulting
model is depicted with blue solid lines, whereas measure-
ment results are depicted with red dashed lines. The parame-
ters identified for the model are listed in Table 2.

3. Proposed load-side external torque estimation

3.1 Observer The motor and load angular velocities
and the torsional angle can be measured using the corre-
sponding encoders. First, we consider no joint torque sen-
sor available. Assuming a stepwise load-side external torque
ḋL = 0, the augmented state equation of the plant is expressed
as: 

ω̇M
ω̇L
θ̇s

ḋL

 =

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dL

 +


1
JM

0
0
0

 TM ,
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0 0 1 0


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ωM
ωL
θs
dL

 . (4)

Then, a first-order minimal-order observer estimating dL is
introduced as (5), where z is a scalar state variable of the ob-
server and L = [l1, l2, l3] is the observer gain vector.

ż = Arz + BrTM + Fry, d̂L = z + Ly,

Ar = −
l2

JLn
, Br = −

l1
JMn
,

Fr =
[
fr1 fr2 fr3

]
,

fr1 = −
1

JLn
l1l2 +

DMn

JMn
l1 − l3,

fr2 = −
1

JLn
l22 +

DLn

JLn
l2 + l3,

fr3 = −
1

JLn
l2l3 + Kn

(
1

JMn
l1 −

1
JLn

l2

)
. (5)

To analyze the physical meaning of the observer given by
(5), it is convenient to represent it as a block diagram. Then,
the equivalent conversion of the block diagram results in that
shown in Fig. 3(a), whose variables are defined as follows:

Q(s) =
l2

JLn

s + l2
JLn

, (6)

αM =
JLn

JMn

l1
l2
. (7)

The first-order low-pass filter, Q(s), determines the estima-
tion bandwidth, i.e., the bandwidth is defined by observer
gain l2, and αM determines the ratio between T̂sM and T̂sK
as follows:

T̂s = αMT̂sM + (1 − αM)T̂sK . (8)

Equation (8) indicates that αM can be designed consider-
ing the accuracy of T̂sM and T̂sK , where the former depends
on the accuracy of motor parameters and friction model,
whereas the latter depends on the accuracy of torsional rigid-
ity and nonlinear models when nonlinearities in transmission
mechanisms such as backlash exist. Given that l2 is experi-
mentally selected according to the desired bandwidth and sta-
ble margin, αM is designed by observer gain l1 and indicates
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the amount of motor-side information that is used. Specifi-
cally, when αM is 1 (i.e., l1 is JMn

JLn
l2), the proposed observer is

equivalent to the estimation proposed in [14], whereas when
αM is 0 (i.e., l1 is 0), the proposed observer is equivalent
to the estimation proposed in [15]. Therefore, the proposed
load-side external torque observer extends these conventional
observers by including them as particular cases.

When the system has a joint torque sensor, the minimal-
order observer can be derived in the same way as (4)–(7).
The state vector is changed from x = [ωM , ωL, θs, dL]T to
x = [ωM , ωL, Ts, dL]T to realize a minimal-order observer
since the joint torque is measurable by a joint torque sensor.
Then, the joint torque is estimated by introducing a gain βK ,
which determines how much the torsional information is used
as follows:

T̂s = αMT̂sM + βK T̂sK + (1 − αM − βK)TsS . · · · · · · · (9)

Here, αM and βK determine the ratio among the motor-side
estimation, the transmission-part estimation, and the joint
torque sensor measurement. The block diagram is shown in
Fig. 3(b). This is a simple expansion of Fig. 3(a) by the addi-
tional use of the joint torque sensor information.

3.2 Gain evaluation through simulations We con-
duct simulations and experiments without using a joint torque
sensor for load-side torque estimation. In addition, we con-
sider no motor disturbance during simulations, i.e., dM = 0,
and no nonlinearity in the transmission mechanisms. The cut-
off frequency of Q(s) is experimentally determined to be 150
Hz.

Our theoretical analyses indicate a sensitivity tradeoff be-
tween motor and transmission modeling errors depending
on αM . Figure 4(a) shows the estimated external torque re-
sponses when the motor has modeling errors (JM = 1.5JMn,
DM = 1.5DMn) for a 2.0 N·m torque step applied to dL at
0.050 s, as indicated in the black dotted line. When αM = 0,
the estimated response shows an ideal low-pass characteristic
without deterioration by modeling errors of motor parame-
ters. Figure 4(a) shows that the estimation accuracy increases
for smaller values of αM . Figure 4(b) shows the estimated
external torque when the transmission has modeling errors
(K = 1.5Kn). When αM = 1, the estimated response shows an
ideal low-pass characteristic without deterioration by model-
ing errors of transmission parameters, and the estimation ac-
curacy increases as αM approaches 1. Figure 4(c) shows the
estimation errors in Figs. 4(a) and 4(b). The vertical axis in
Fig. 4(c) corresponds to the one-second integral of the esti-
mation error, i.e.,

∫ 1.050
0.050 (dLRe f − d̂L)dt, and dLRe f is the in-

put load-side external torque denoted as Ref in Figs. 4(a) and
4(b). Clearly, small αM values reduce the influence of motor
model errors, and αM approaching 1 reduces the influence of
transmission model errors.

In practice, every plant parameter has errors, and in some
cases the transmission model can be assumed to present ei-
ther smaller or larger errors than the motor model. Then, αM
can be selected for more accurate estimation considering the
balance between the model parameter errors between the mo-
tor and transmission. Figure 5(a) shows the estimated torque
when larger modeling error is attributed to the motor than to
the transmission model. Specifically, +50% error is set to the
motor viscosity and +20% error to the torsional rigidity (i.e.,

DM = 1.5DMn, K = 1.2Kn). Moreover, a −0.50 N·m step
motor torque disturbance is applied at 0.20 s. As a large mod-
eling error is given to the motor parameters, better responses
are obtained as αM approaches 0. In fact, small αM values
retrieve a gradual decrease by DM error, and the effect of the
sudden decrease by dM is mitigated for the estimated external
torque. In contrast, vibration induced by the torsional rigid-
ity modeling error increases for small αM values. Figure 5(b)
shows the torque estimation when larger modeling error is at-
tributed to the transmission than to the motor model. Hence,
+20% error is set to the motor viscosity and +50% error to
the torsional rigidity (i.e., DM = 1.2DMn, K = 1.5Kn). The
graph confirms that the estimation accuracy improves as αM
approaches 1. The simulation results suggest that the pro-
posed load-side external torque observer enables more ac-
curate estimation than conventional observers provided that
gain αM is adequately designed.

3.3 Gain evaluation through experiments We con-
firm the simulation results shown in Figs. 5(a) and 5(b)
through experiments. The designed observer is discretized
by the Tustin transformation with sampling frequency of 2.5
kHz and load-side external torque dL input by the load-side
motor. Modeling error is introduced by varying the observer
parameters (e.g., D′Mn = DMn/1.5) instead of the plant pa-
rameters. Therefore, the conditions in the experiments are
different from those of the simulations, but similar results
are expected. Figure 6(a) shows the estimated response when
D′Mn = DMn/1.5 and K′n = Kn/1.2. The large modeling er-
ror on the motor-side parameters makes the estimation accu-
racy improve as αM approaches 0. When αM = 0, both the
decrease in the estimated torque caused by modeling error
in DM and the influence of dM at 0.20 s are removed. Fig-
ure 6(b) shows the estimated torque when D′Mn = DMn/1.2
and K′n = Kn/1.5. As expected, the estimation accuracy im-
proves as αM approaches 1 because a larger error is present
in the transmission model. In both cases, the experimental
results confirm the simulation outcomes, thus validating the
proposed observer.

4. Proposed minimum variance estimation

4.1 Gain design In the previous section, we demon-
strate that the estimation accuracy can be changed according
to the value of the gain and the accuracy of plant parame-
ters. Instead of manual adjustment, a systematic design for
the gain is more suitable in practical settings. In this section,
we propose a gain design method to minimize the variance
for estimating dL assuming that the range of plant parameter
variations is known. This is a valid assumption as a variation
from the nominal values of plant parameters (e.g., motor in-
ertia moment, viscosity, and torsional rigidity change up to
±5%, ±30%, and ±20%, respectively) can be often assumed.
To determine αM , it is also assumed that the plant parameters
follow a Gaussian probability distribution and are indepen-
dent from each other. Each distribution has mean µ, which
is equal to the nominal value of the parameter, and variance
σ2, which depends on the reliability of each parameter. For
instance, if the torsional rigidity is assumed to change from
0.80 to 1.20 of the nominal value within 99.7% probability,
variance σ2 can be obtained as 3σ2=0.20µ.

In the proposed observer, dL is estimated as:

4 IEEJ Trans. XX, Vol.xxx, No.1, 201x
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Fig. 4. Comparison of the errors when JM = 1.5JMn and DM = 1.5DMn, or K = 1.5Kn, with various αM .
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K = 1.5Kn.

Fig. 5. Simulation comparison of load-side external
torque responses in two cases, and -1.0 N·m step dM is
input at 0.20 s with various αM .

d̂L = (JLns + DLn)ωL − αMT̂sM − (1 − αM)T̂sK . (10)

and αM should be designed to minimize the variance of d̂L.
The estimation variance can be calculated as:

σ2
d̂L
= σ2

L + α
2
Mσ

2
T̂sM
+ (1 − αM)2σ2

T̂sK

= (σ2
T̂sM
+ σ2

T̂sK
)

αM −
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(a) Larger error in motor side than transmission part: D′Mn = DMn/1.5,
K′n = Kn/1.2.
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(b) Larger error in transmission part than motor side:D′Mn = DMn/1.2,
K′n = Kn/1.5.

Fig. 6. Experimental comparison of load-side external
torque responses in two cases, and -1.0 N·m step dM is
input at 0.20 s with various αM .

+
σ2

T̂sM
σ2

T̂sK

σ2
T̂sM
+ σ2

T̂sK

+ σ2
L, (11)

where σ2
d̂L

, σ2
L, σ2

T̂sM
, and σ2

T̂sK
are the variances of dL, load-

side, motor-side, and transmission-part estimations, respec-
tively. Equation (11) indicates that σ2

d̂L
can be minimized

using the following αM:

αM =
σ2

T̂sK

σ2
T̂sM
+ σ2

T̂sK

. (12)
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σ2
d̂LS
= (σ2

T̂sM
+ σ2

T̂sS
)

αM −
σ2

T̂sS

σ2
T̂sM
+ σ2

T̂sS

(1 − βK )


2

+

σ2
T̂sM
σ2

T̂sK
+ σ2

T̂sK
σ2

T̂sS
+ σ2

T̂sS
σ2

T̂sM

σ2
T̂sM
+ σ2

T̂sS

βK −
σ2

T̂sS
σ2

T̂sM

σ2
T̂sM
σ2

T̂sK
+ σ2

T̂sK
σ2

T̂sS
+ σ2

T̂sS
σ2

T̂sM


2

+

σ2
T̂sM
σ2

T̂sK
σ2

T̂sS

σ2
T̂sM
σ2

T̂sK
+ σ2

T̂sK
σ2

T̂sS
+ σ2

T̂sS
σ2

T̂sM

+ σ2
L, (17)

Then, σ2
T̂sM

and σ2
T̂sK

can be calculated by linear approxima-
tion of (2) and (3):

σ2
T̂sM
= ω̇2

Mσ
2
JM
+ ω2

Mσ
2
DM
+ J2

Mnσ
2
ω̇M
+ D2

Mnσ
2
ωM
+ σ2

TM
+ σ2

dM
,

(13)

σ2
T̂sK
= (θM − θL)2σ2

K + K2
nσ

2
θM
+ K2

nσ
2
θL
, (14)

where σ2
JM

, σ2
DM

, σ2
K , σ2

TM
, and σ2

dM
are the variances of the

corresponding parameter. The variation of measured motor
torque σ2

TM
is caused by current sensor noise. Here please

note that the nonlinear effects such as motor Coulomb fric-
tion and backlash are not considered explicitly but it can be
included. Motor Coulomb friction can be considered in the
variance of motor-side disturbance σ2

dM
and the backlash in

the variance of torsional rigidity σ2
K . Also, σ2

θM
, σ2
θL

, σ2
ωM

,
and σ2

ω̇M
are the measurement variances, which are caused

by the quantization error from the encoder. When the resolu-
tion of the encoder is q, its variance is calculated as:

σ2(q) =
∫ q

2

− q
2

1
q

x2dx =
q2

12
. (15)

When the angular velocity and angular acceleration are ob-
tained by backward difference, their resolutions are calcu-
lated as ωres(q) = q

Ts
and ω̇res(q) = q

T 2
s
, respectively, where Ts

is the sampling time. Therefore, the variances of the encoder
measurements can be calculated by substituting the resolu-
tions into (15).

The proposed method can be extended to consider a joint
torque sensor, whose block diagram is shown in Fig. 3(b).
The sensor is robust against modeling errors but suffers from
noise. Therefore, combining the three obtained joint torques,
T̂sM , T̂sK , and TsS , can improve the estimation accuracy.
Gains αM and βK can be designed to minimize the variance
of the estimated dL.

The noise of the joint torque sensor is also assumed to fol-
low a Gaussian probability distribution. In the proposed ob-
server with the sensor, dL is estimated as:

d̂L =(JLns + DLn)ωL

− αMT̂sM − βK T̂sK − (1 − αM − βK)TsS . (16)

The estimation variance can be calculated as (17): where
σ2

d̂LS
and σ2

TsS
are the variance of dL estimation with joint

torque sensor and that of the sensor measurement, respec-
tively. Therefore, σd̂LS

can be minimized using the following
αM and βK :

αM =
σ2

T̂sK
σ2

T̂sS

σ2
T̂sM
σ2

T̂sK
+ σ2

T̂sK
σ2

T̂sS
+ σ2

T̂sS
σ2

T̂sM

, (18)

βK =
σ2

T̂sS
σ2

T̂sM

σ2
T̂sM
σ2

T̂sK
+ σ2

T̂sK
σ2

T̂sS
+ σ2

T̂sS
σ2

T̂sM

. (19)

Comparing the proposed method with and without joint

torque sensor shows that the variance of the estimated dL al-
ways reduces using the joint torque sensor:

σ2
d̂L
− σ2

d̂LS

=
σ2

T̂sS
σ2

T̂sM

(σ2
T̂sM
+ σ2

T̂sK
)(σ2

T̂sM
σ2

T̂sK
+ σ2

T̂sK
σ2

T̂sS
+ σ2

T̂sS
σ2

T̂sM
)

≥ 0. (20)

Note that besides the variance reduction, the estimation ac-
curacy is not influenced by the error of nominal parameters
when using a joint torque sensor, as TsS can be obtained with
robustness against modeling errors of the nominal parame-
ters.

4.2 Minimum variance evaluation through simula-
tions The simulations and experiments for minimum
variance estimation consider six methods: only motor-side
encoder estimation based on state observer, motor-side esti-
mation based on (2), transmission-part estimation based on
(3), proposed estimation without joint torque sensor based on
(8), torque-sensor-based estimation based on TsS , and pro-
posed estimation with joint torque sensor based on (9). The
load-side external torque can be estimated only using the
motor-side encoder by implementing the state observer. As-
suming a stepwise load external torque ḋL = 0, it can be es-
timated from the augmented state vector. Given that the state
observer using only the motor-side encoder requires all plant
parameters, it is severely affected by modeling errors. The
sensor configurations for the six evaluated methods are listed
in Table 3.

To compare the performance of each method, we evalu-
ated the variance and L2 norm error of the load-side external
torque through simulations. The L2 norm error is analyzed
to evaluate the robustness against the nominal model error
(i.e., µ error in Gaussian probability distribution). A 1.0 N·m
step load-side external torque was input to the six estima-
tion methods undergoing plant parameter variations. We con-
ducted 10000 simulation trials per method and averaged the
variance and L2 norm error of the load-side external torque.

The motor and transmission model parameters were ran-
domly chosen from their probability distributions in each
simulation, and the joint torque sensor measurement noise
also followed the corresponding Gaussian probability distri-
bution. The 3σ2 plant parameter variation in the simulated
plant is given as follows: JM:±5%, DM:±50%, K:±30%,
dM:±0%. The variances of plant parameters, σ2

JM
, σ2

DM
, σ2

K ,
and σ2

dM
, in αM and βK design were based on these variations,

and those of encoder measurements, σ2
θM

, σ2
θL

, σ2
ωM

, and σ2
ω̇M

,
were given for a 20-bit resolution according to (15). In ad-
dition, the variance of the torque sensor was determined as-
suming that 99.7% of the torque sensor noise lies within the
1.0% of the rated measurable torque (20 N·m). Therefore,
3σ2

TsS
= 20 · 0.010. Also, the motor torque measurement

variation caused by current sensor noise can be designed by
measuring the noise as joint torque sensor. In this paper, σ2

TM

is designed to be zero since motor torque is not input in our

6 IEEJ Trans. XX, Vol.xxx, No.1, 201x



Minimum-Variance Load-Side External Torque Estimation Robust Against Modeling and Measurement Errors (Shota Yamada et al.)

Table 3. Sensor configurations in six estimation methods.

motor-side encoder load-side encoder joint torque sensor
Only motor-side encoder estimation ✓

Motor-side estimation ✓ ✓
Transmission-part estimation ✓ ✓

Prop. w/o torque sensor ✓ ✓
Torque-sensor-based estimation ✓ ✓

Prop. w/i torque sensor ✓ ✓ ✓

Table 4. Statistical analyses in simulations.

Variance L2 norm error
Only motor-side encoder 8.8e-3 1.1e+2

Motor-side 1.2e-3 3.0e+1
Transmission-part 1.5e-3 4.4e+1

Prop. w/o torque sensor 1.0e-3 1.8e+1
Torque-sensor-based 9.8e-4 9.8

Prop. w/i torque sensor 9.4e-4 1.4e+1

simulation and experimental scenarios.
Table 4 lists the estimation performance of the six evalu-

ated methods. In the estimation based only on the motor-side
encoder, the variance and error of the estimated torque are
much larger than those from the other methods, thus indicat-
ing the clear advantage of applying a load-side encoder for
external torque estimation. In our proposed method without
joint torque sensor, the variance reduces compared to both the
motor-side and transmission-part estimation, despite the sen-
sor configurations of the three methods being the same. Our
method without torque sensor can reduce the variance and L2
norm error by using the plant parameter and measurement in-
formation (i.e., the variance of the Gaussian probability dis-
tribution). Compared with the torque-sensor-based estima-
tion, the variance in our previous proposed method is larger,
because the variance of the torque sensor measurement was
small in this simulation.

When the system has a joint torque sensor, the proposed
method further reduces the estimation variance to the small-
est value among the evaluated methods. Still, regarding the
L2 norm error, our method is inferior to the torque-sensor-
based estimation, because the proposed method determines
gains αM and βK that minimize the variance instead of the
L2 norm error. Moreover, as the model parameters of the
motor and transmission (JM , DM , and K) varied during simu-
lation, the torque-sensor-based estimation retrieves a smaller
L2 norm error as it is not influenced by the parameter varia-
tion. In practice, however, the torque sensor measurements
do not follow the Gaussian probability distribution by the
presence of offset, drift, and hysteresis, resulting in deteri-
oration of the estimation accuracy. The experimental results
presented in the sequel show this deterioration by unmodeled
effects of the torque sensor.

4.3 Minimum variance evaluation through experi-
ments During the experiments to evaluate minimum vari-
ance estimation, we used the nominal plant parameters iden-
tified in section 2 for the observers. To select αM and βK ,
the variances of the plant parameters, σ2

JM
, σ2

DM
, σ2

K , and
σ2

dM
, were set to 3σ2 of the parameters: JM:±1%, DM:±10%,

K:±20%, and dM:±0%. The variance of the joint torque sen-
sor was determined based on the assumption that 99.7% of its
noise lies within the 0.050% of the rated measurable torque.
In addition, we removed the offset of the joint torque sensor
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Proposed estimation w/o torque sensor

Proposed estimation w/i torque sensor

Fig. 7. Comparison of estimation performance in
experiments.

Table 5. Experimental results.

Variance L2 norm error
Only motor-side encoder 0.959 5.96e+3

Motor-side 0.219 4.21e+2
Transmission-part 0.226 4.49e+2

Prop. w/o torque sensor 0.218 4.07e+2
Torque-sensor-based 0.148 1.43e+2

Prop. w/i torque sensor 0.147 1.39e+2

measurements and applied a 1.0 N·m step load-side external
torque for 1.0 s.

Figure 7 shows the comparison of the estimation perfor-
mance. In Fig. 7, the response of only motor-side encoder
estimation is not shown because the response is too noisy.
The variance and L2 norm error of the proposed estimation
method are listed in Table 5. The tendency of the exper-
imental results are similar to that of the simulation results
shown in Table 4. Using only the motor-side encoder, it is
difficult to determine an accurate estimation. Still, the pro-
posed methods show the smallest variance and errors for the
same sensor configuration. Unlike simulation, the L2 norm
error of the proposed method with joint torque sensor was
smaller than that of the torque-sensor-based estimation in the
experiments. This opposite trend is likely to be caused by the
nonlinearities of the torque sensor signal. Although the real
measurements from the joint torque sensor deteriorate the es-
timation accuracy, the proposed method improves estimation
by combining the information from both encoders.

5. Conclusion

By analyzing the minimal-order observer for load-side ex-
ternal torque estimation, we propose an improved observer.
The proposed method combines two conventional observers
for increased estimation accuracy by considering the model-
ing and measurement errors in the motor and transmission of
a two-inertia system. Furthermore, we propose a load-side
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external torque observer considering a joint torque sensor,
which notably improves the robustness against modeling er-
rors. Then, for minimum variance estimation of load-side
external torque, we derive a systematic design for the ob-
server gains based on the variance of the plant parameters and
measurements assuming that they follow independent Gaus-
sian probability distributions. Simulation and experimental
results verify the high performance of the proposed observers
compared to similar methods. To further improve the estima-
tion accuracy, we will investigate the online identification of
load-side parameters in a future development.
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