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Abstract—Rapidly-exploring random trees(RRT) are popular
algorithms in path planning, because they provide efficient solu-
tions to singe-query problems and possess probabilistic complete-
ness. Its modifications, such as RRT* and Informed RRT*, extend
RRT to asymptotically find optimal solutions as the number of
sampling approaches infinity. These algorithms, however, give no
considerations to robot’s poses and kinematic constraints, and
therefore their results can be unfeasible for a nonholonomic robot
with given initial pose and desired final pose. In this paper, we
present another modification of RRT* for nonholonomic path-
planning with not only kinematic constraints but also initial and
final pose constraints. The proposed method constructs the search
tree as a directed graph of which each node retains the position
(x, y) plus the robot pose θ, and a segment of clothoid curve and
line is used for connecting and evaluating the cost between two
nodes. Furthermore, by building two trees from both initial and
final poses and executing bidirectional search, this method can
find a path containing crosscut point. We experimentally show
that our approach calculates smoother, more feasible paths than
RRT* and satisfy the given constraints on curvature.

Index Terms—path planning, nonholonomic constraints,
wheeled robots, clothoid curve

I. Introduction

Path planning is one of the most important parts in au-
tonomous navigation. Given the map of the environment
and the current position, path planning is the technique for
finding safe, feasible paths steering the robot to the desired
state while avoiding collisions with obstacles. The calculated
path is then used as a reference in path following control.
Generally, optimal motion planning or trajectory generation
subject kinodynamic equations and constraints are formulated
as optimal control[1][2]. From the point of view of compu-
tational complexity, the problem of finding an optimal path
subject to holonomic and differential constraints as formulated
PSPACE-hard[3], which means that it is at least as hard as
solving any NP-complete problem and thus, assuming P , NP,
there is no efficient polynomial-time algorithm to this problem.
For that reason, research has been directed toward finding
approximate methods.

Many algorithms have been proposed for path planning.
Graph-based searches, like A*[4] and Voronoi map[5], which
discretize the configuration space with a grid, are called

(a) RRT* (Conventional) (b) Proposal

Fig. 1. Solutions found by RRT*(left) and Proposed method(right) for exactly
same sampling. Although the one found by proposed method is a little bit
longer than that of RRT*, the calculated path is smoother and contains
a crosscut point to satisfy final pose constraint, which is impossible for
converntional RRT variants.

resolution complete and are guaranteed to find the optimal
solution up to the resolution of discretization. Sampling-based
searches, like Probabilistic Roadmaps(PRM)[6] and Rapidly-
exploring Random Trees(RRT)[7] do not need discretiza-
tion of the configuration space, thus scale effectively with
the dimension of configuration space. Especially, RRT can
consider kinodynamic constraints[8][9] and is guaranteed to
be probabilistically complete[7]. In [10], authors combined
any-angle search with RRT* and showed that their method
generates smoother and shorter trajectories faster than RRT,
satisfying complex nonholonomic constraints. However, none
of these methods give consideration to initial and final pose
constraints, although they are very likely to exist in some path
planning problems such as autonomous parking.

In this paper, we modify RRT* so that it can satisfy initial
and final pose constraints, satisfy the constraints on curvature
for nonholonomic wheeled robots, and if necessary, make a
crosscut point somewhere on the path. To take into account
pose constraint, compared to normal RRT, the robot pose θ is
added as one of the states of each node. During the planning
procedure, clothoid segment is used to connect between two
poses so that the tangent of the curve is continuous on both
ends and the curvature is bounded within the kinematic con-
straints. The length of this segment is also used for evaluating
the cost between two nodes. This enables RRT* to generate



(a) (b) rewiring

Fig. 2. (a) Choose the parent of xnew that minimize its cost. (b) Rewire the parent of surrounding nodes to xnear if the cost becomes smaller.

more smooth and feasible paths. Also, by constructing search
tree from both initial and final pose and running bidirectional
search until a pair of nodes of the same pose is found, it is
possible to find a path containing crosscut point if necessary.
We compared the calculated path with that of RRT* and
showed that it produces smoother trajectories.

The remainder of this paper is organized as follows. Section
2 reviews the algorithm and simulation results of RRT*.
Section 3 provides the detail of connection and cost evaluation
between two poses using G1fitting of clotohid curves, which is
important for evaluating the cost between two poses. Section
4 presents the main algorithm of the proposed method and
Section 5 and 6 presents simulation results and experimental
results respectively. In Section 6, we give the conclusions and
futute works of this research.

II. PriorWork

In this section, we review the algorithms of conventional
RRT variants.

A. RRT*

RRT, originally proposed in [7], consits of mainly 4 pro-
cedures: sampling, nearest-neighbour search, node extention
and collision check. For xrand sampled in sampling and nearest-
neighbour search procedure, the node xnear, which is nearest to
xrand among the search tree, is chosen. In the node extention
procedure, some optimal displacement form xnear to xrand is
calculated and if the steered position is collision-free, in the
addition procedure, a new node xnew is added there with its
parent xnear . This process is repeated until xnew falls into Xgoal,
the goal region.

Although RRT is proved to possess probabilistic complete-
ness, it is not guaranteed to produce an optimal solution. In
[11], the authors proposed RRT* and proved its asymptotic
optimality. In RRT*, after xnew is added, xnew and its surround-
ing nodes {Xnear} are rewired in order to shorten their distance
from root.

Let N be the number of nodes in the search tree and d be the
dimension of configuration space. {Xnear} is the set of nodes
that is within the radius of ρ from xnew as shown in Fig. 2.
The radius ρ is defines as follows.

(a) RRT (b) RRT*

Fig. 3. (a) A trial of RRT algorithm in parking lot situation. (b) A trial of
RRT* for the same sitiation with exactly same sampling as (a). Both algorithm
does not take into account pose constraint.

ρ = R
(

log N
N

)1/d

(1)

The rewiring procedure of xnew consists of two steps as
follows.

1) In the first step, for each node x̃near that belongs to Xnear,
the cost of xnew(here defined as L̃) is calculated on the
assumption that its parent was changed to x̃near, and the
node that minimizes L̃ is chosen to be the parent of xnew.
Fig. 2(a) illustrates this procedure. Within the open ball
B(xnew, ρ), the parent of xnew is changed from xnearest to
x̃near in order to lower its cost..

2) In the second step, for each node x̃near that belongs to
Xnear, the cost of x̃near(here defined as L̃′) is calculated
on the assumption that the parent of x̃near was changed
to xnew. If L̃′ is smaller than the current cost x̃near, the
parent of x̃near is changed to xnew. In Fig. 2(b), since the
cost of x̃near can be reduced, it parent is changed to xnew.

The simulation result of RRT and RRT* are shown in Figure
3(a) and Figure 3(b) respectively. Although each algorithm was
tested for the same seed, RRT* can generate more shorter path.
However, in cases where the robot’s final pose is constrained
as shown in Figure 3, RRT and RRT* needs to be extended
to allow for pose constraints and generate more feasible path.



(a) Edge extention (b) Case 1 (c) Case 2

Fig. 4. (a) Edge extention using clothoid curve. Each pose P0, P2, · · · , P6 are steered using clothoid curve with curvature = {−0.3,−0.2,−0.1, 0.0, 0.1, 0.2, 0.3}
respectively. (b)(c) Connection of two poses with the combination of clothoid curves and lines

B. Theta*-RRT

In [10], the authors combined Theta* with RRT to improve
the efficiency of RRT* in high-dimensional nonholonomic
spaces. It also considers a continuous control space during
planning and exploits steer function in order to take into
account nonholonomic constraints. Although it is capable of
generating shorter paths faster than RRT, A*-RRT, RRT*, A*-
RRT* and satisfy nonholonomic constraints, the initial and
final pose constraint is still not considered as the condition of
path planning problem. In contrast, although its convergence
property is not considered, our method can generate paths that
satisfy pose constraints.

C. Sampling based methods using Dubins / Reeds-Shepp car
model

In [12], the authors combined their proposed algorithms,
Differential Fast Marching Trees* and reeds-shepp path to
generate a curvature-constrained path satisfying initial pose.
However, their algorithm is formalized to get a final node
within the goal region Mgoal and so cannot specify an exact
final state. Also the use of reeds-shepp path reeds to disconti-
nuity of curvature along the path. [13] also employs Dubins car
model for edge extention, which cannot avoid discontinuous
curvature. The discontinuity of curvature is problematic for
nonholonomic wheeled robots, because it requires discontinu-
ous change in tuning radius or steering angle.

III. Connection and cost evaluation betwwen two poses
considering curvature constraints

In our proposed method, each node posesses robot pose θ
as one of the states. We employ clothoid curve in order to
extend smooth edge and calculate the pose of new node along
the tangent of the curve. We also make use of non-euclidean
metric to evaluate the cost between two poses, which enables
us to apply RRT* to cases where each node possesses pose. In
this section, we first explain the procedure of edge extension
and then the cost evaluation of two poses using G1fitting with
clothoids[14].

A. Edge extention using clothoid curves

Here we introduce the calculation of edge extension using
clothoid curve from given robot pose with given curvature

variation. Hereafter we define the curvature is positive if
the rotational change of tangent vector is clockwise. For a
given pose (x, y, θ), curvature variation k and arc length L, the
displacement of initial pose along clothoid curve is expressed
as follows.

(
∆x
∆y

)
=

(
cos(θ − π2 ) − sin(θ − π2 )
sin(θ − π2 ) cos(θ − π2 )

) sgn(k)
1
a

C(aL)
1
a

S (aL)

 (2)

∆θ = −k · L2

2L
(3)

where C(τ) and S (τ) are fresnel integral defined as follows.

a =

√
|k|
2L

(4)

C(τ) =
∫ τ
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√
π

2

∫ √ 2
π τ

0
cos
π

2
τ2dτ (5)

S (τ) =
∫ τ

0
sin t2dt =

√
π

2

∫ √ 2
π τ

0
sin
π

2
τ2dτ (6)

Fig. 4(a) illustarates pose displacement from (x, y, θ) =
(0, 0, π/3) along a clothoid curve with L = 15 and curvature
= {−0.3,−0.2, · · · , 0.2, 0.3} respectively. In this way, it is
possible to recursively create directed nodes from the initial
pose.

Hereafter we denote this procedure as an algorithm
ExtendClothoid to return a new pose which takes initial
pose pstart, arc length L, curvature variation κ as its inputs.

ExtendClothoid(pstart, L, κ) =

xstart
ystart
θstart

 +
∆x
∆y
∆θ


where ∆x,∆y,∆θ is given in (2), (3).

B. Cost evaluation of two poses

For a given pair of two nodes, denoted as P1 = (x1, y1, θ1)
and P2 = (x2, y2, θ2) respectively, it is possible to connect
between them with the combination of clothoid curves and
lines. Depending on the configurations, there are two cases
for the combination.



Fig. 5. Connection of two poses P0 = (x0, y0, ϕ0), P1 = (x1, y1, ϕ1) using
G1fitting

Case.1 Against the baseline P1−P2, if P1 and P2 are directed
to the other sides each other, as shown in Figure Fig. 4(b)
the two poses can be connected with the combination
of a clothoid curve and a line. First, two lines are
extrapolated from P1 and P2 in the direction of θ1 and
θ2+π respectively and their intersection point Q is found.
Then an isosceles triangle is constructed with its one
corner either P1 or P2. If the two corners of the isosceles
were P1 and P3 as shown in Figure Fig. 4(a), the two
poses P1 and P3 are connected with clothoid and the
remaining P3 − P2 is connected with line.

Case.2 If both P1 and P2 are directed to the same side against
the baseline P1 − P2, the middle point of |P1P2| is used
as a waypoint. As shown in Figure Fig. 4(c), a new pose
N, located at the middle point of |P1P2| and directed to
−(θ1 + θ2)/2, is set and each pair of P1N and NP2 is
connected in the same way as Case 1

Hereafter we denote this procedure as an algorithmm
NodeCost which takes two poses P1 and P2 as inputs and
outputs their cost.

NodeCost(P1,P2)

=


⌢

P1P3 +P3P2 (Case.1)
NodeCost(P1,N) + NodeCost(N,P2) (Case.2)
∞ (|k| > kmax)

If the curvature of clothoid curve was above the curvature
constraint, the cost between the two pose is evaluated as
infinity.

C. Connection of two poses using G1fitting

In this section we describe the connection of two poses
considering curvature constraints. Generally, when two poses
P0 = (x0, y0, ϕ0), P1 = (x1, y1, ϕ1) are given as shown in Fig.

5, G1fitting referes to connecting these two poses with a
continuous curvature path expressed as follows.

x′(s) = cosϑ(s) x(0) = x0

y′(s) = sinϑ(s) y(0) = y0

ϑ′(s) = K(s) ϑ(0) = ϑ0.

If the curvature changes linearly, it is expressed as K(s) =
κ′s+ κ, where κ′ is the change of curvature and κ is the initial
curvature. Then the curve takes the form of

x(L) = x0 +

∫ L

0
cos

(
1
2
κ′τ2 + κτ + ϑ0

)
dτ

y(L) = y0 +

∫ L

0
sin

(
1
2
κ′τ2 + κτ + ϑ0

)
dτ.

By numerical optimization, it is possible to find the param-
eters L, κ′, κ such that the following boundary condition

x(L) = x1 y(L) = y0 (x′(L), x′(L)) = (cosϑ1, sinϑ1)

holds. With this method, we can find the arc length and
curvature variation in NodeCost that connects two poses.

IV. Proposed method

The algorithm of proposed algorithm is presented in this
section. It searches for feasible path by incrementally building
a search tree T , which consists of a set of nodes V and a set
of edges E. Each edge is a directed curve which starts from a
specific node and ends at a specific node.

The overall procedure of proposed algorithm is presented
in Alg. 1. For a randomly sampled point xrand, its nearest
neighbour, pnearest is searched among the search tree (line5-
6). Then a new edge is extended using Alg. 2(line7). If the
new edge is collision-free, the surrounding nodes are refined
in the radius of ρRRT∗, as described in Section II(line 8-34).
Like RRT*, the parent of pnearest is rewired to another node in
Pnearest such that the cost of pnearest takes the minimum value
(line 13-21). And then, with respect to each node in Pnearest, its
parent is changed to pnearest if its cost decreases (line 23-33).
In these procedures, the cost is evaluated using NodeCost.
In order to give consideration to curvature constraint, the
subfunction Steer is modified from the original RRT*.

The subfunction Steer, described in Alg. 2, outputs a new
node pnew which is extended from pfrom by constant distance
L, using admissible variation of curvature in K . In line 4-12,
it searches for the variation of curvature that brings pnew most
nearest to destination point xdst. The distance to xdst, denoted
as d, is calculated using Euclide distance in the configuration
space, as conventional RRTs. The node that realizes minimal
distance dmin is stored and updated during the search (line
7-11), to be returned and used as a new node in the main
procedure.



Algorithm 1: Construct Directed RRT*(pstart)
Input : initial pose pstart
Output : list of nodes V and their edges E
Parameter: length of extended edge L, the set of

admissible curvatures K
1 V ← {pstart};
2 E ← ∅;
3 T ← (V,E);
4 for iteration = 1...N do
5 xrand ← Uniform(X);
6 pnearest ← NearestNode(T , xrand);
7 pnew ← Steer(pnearest, xrand, L,K);
8 if CollisionFree(pnearest, pnew) then
9 V ← ∪{pnew};

10 Pnear ← NearNodes(T , pnear, ρRRT∗);
11 pmin ← pnearest;
12 cmin ← Cost(pnearest) + L;
13 for ∀pnear ∈ Pnear do
14 cnew ←

Cost(pnear) + NodeCost(pnear, pnew,K);
15 if cnew < cmin then
16 if CollisionFree(pnear, pnew) then
17 pmin ← pnear;
18 cmin ← cnew;
19 end
20 end
21 end
22 E ← E ∪ {(pmin, pnew)};
23 for ∀pnear ∈ Pnear do
24 cnear ← Cost(pnear);
25 cnew ←

Cost(pnew) + NodeCost(pnew, pnear,K);
26 if cnew < cnear then
27 if CollisionFree(pnew, pnear) then
28 pparent ← Parent(pnear);
29 E ← E \ {(pparent, pnear)};
30 E ← E ∪ {(pnew, pnear)};
31 end
32 end
33 end
34 end
35 end
36 return V,E

A. Bidirectional Search

In order to account for both initial and final pose, the
proposed method builds two search trees from each pose using
Alg. 1. LaValle and Kuffner refers to bidirectional version of
RRT and applies it to kinodynamic motion planning. In [7],
the authors proposed an algorithm called RRT-Connect that
aggressively uses bidirectional search and gave a proof on its
probabilistic completenss.

Bidirectional search is generally more efficient than single-

Algorithm 2: Steer(pfrom, xdst, L,K)
Input : the start pose pfrom, the destination point

xrand
Output : a new node pnew extended continuously

from pfrom
Parameter: the length of extended edge L, the set of

admissible curvatures K
1 dmin ← ∞;
2 κopt ← None;
3 pnew ← None;
4 for κ in K do
5 p← ExtendClothoid(pfrom, L, κ);
6 d ← ∥p, xdst∥;
7 if d < dmin then
8 dmin ← d;
9 κopt ← κ;

10 pnew ← p;
11 end
12 end
13 return pnew

TABLE I
Comparison of proposed method and RRT*

Planner Number of nodes Path length [m]
RRT* 682.3 ± 306.3 37.86 ± 4.54

Proposal 725.0 ± 344 53.58 ± 3.34

query search, because the search trees have more coverage
of the planning domain. Especially when the pose of node is
concerned, like in our problem, bidirectinal search provides
more possible intersections between the two search trees
such that the pose is connected continuously. The proposed
algorithm repeats exploration until the two search trees have
a pair of nodes which are regarded as the same pose within a
specific threshold.

V. Simulation Results

The proposed algorithm was compared with RRT* in an
environment simulating an autonomous parking. As we have
already showed in previous figures, we assumed that a car
initially stopping with the pose (x, y, θ) = (2.0, 15.0, π/3) starts
maneuvering to the goal pose (x, y, θ) = (1.5, 2.0, π/2). The
maximum of derivative of curvature was set to ±0.4 with
dicretization step of 0.1. The obstacles are filled in black and
also inflated by some specific margin wmargin to account for
the size of the car.

We prepared 60 sets of uniformly distributed samples in the
configuration space and applied proposed algorithm and RRT*
to each set respectively. As in Section III, bidirectional search
was used and the threshold (∆x,∆y,∆θ) for node intersection



(a) early period (b) middle perid (c) final path(Proposed)

(d) curvature along the path (e) curvature variation along the path (f) final path(RRT*)

Fig. 6. (a-b) The transition of search trees for one of the seeds. (c) The final path found by proposed method(d-e) Curvature κ and curvature variation κ′
along the path (f) The final path found by conventional method(RRT*)

(a) early period (b) middle perid (c) final path(Proposed)

(d) curvature along the path (e) curvature variation along the path (f) final path(RRT*)

Fig. 7. (a-b) The transition of search trees for another seed. (c) The final path found by proposed method(d-e) Curvature κ and curvature variation κ′ along
the path (f) The final path found by conventional method(RRT*)

was as follows.

∆2x + ∆2y < 0.5
|∆θ| < θthresh = π/12

Fig. 6 and Fig. 7 illustrate the simulation results of proposed
method and RRT* for two of the prepared random sampling
sets. In each figure, subfigure (a)(b) illustrate the planning
processes of proposed method. The blue search tree grows
from initial pose and the red one grows from final pose.

Subfigure (c) shows the final path found by proposed method
while subfigure (d) shows the final path found by RRT* using
the same samples.

In Fig. 6 the pose of connected node was (x, y, θ) =
(22.70, 9, 69, 0.06) with (∆x,∆y,∆θ) = (−0.067, 0.042, 0.22)
and in Fig. 7 (x, y, θ) = (23.92, 5.65,−0.77) and (∆x,∆y,∆θ) =
(0.28,−0.28,−0.026).

The curvature and its derivative along the path are shown
in subfigure (d) and (e) respecively. Although the curvature



(a) grid map of the envi-
ronment

(b) mobile robot

Fig. 8. experimental setup

is not continuous, in both cases, its derivative is within the
specified range of ±0.4.

VI. Experimental results

In order to test the trackabiity of the path generated by
our algorithm, we run a path planning and a path tracking in
indoor environment using a mobile robot. As an experimetal
setup, we prepared the occupancy grid map of the environment
shown in Fig. 8(a). We used a small-carlike robot shown in
Fig. 8(b). The carlike-robot is front-wheel driven one and the
front wheel is steered with the attached servo motor.

A. Path Planning

In the first step, we applied our proposed method to the
grid map with initial pose (xinit, yinit, θinit) = (−1.0, 0.0, 0.0) and
final pose (xgoal, ygoal, θgoal) = (2.1,−1.3, π/2). The variation of
curvature used for the planner was changed for 3 cases:(1)
K1 = {0,±0.3,±0.6,±0.9,±1.2,±1.5}, (2) K2 = K1 ∪ {±1.8},
and (3) K3 = K2 ∪ {±2.1}.

The result using each list of curvatures are shown in Fig.
9(a)-(c) respectively. The search trees are built from both
the initial pose(left side) and the final pose(right below) and
displayed in blue line. The final path is displayed in red line.
The three trajectories reflect the difference in curvature with
which they were generated. As Path1 is extended with smaller
curvature than Path3, the path is somewhat straightforward
around the crosscut point. In each cases, two search trees are
continuously connected within the threshold.

Additionaly, we put another obstacle around the crosscut
point and in order to show that the proposed algorithm can
make crosscut point appropriately depending on the planning
environment. These results are shown in Fig. 9(d)-(f).

B. Path Tracking

To the generated path, path following using the steering
mobile robot was executed and the trackability of the path
was tested. During the experiment, the translational speed
was constant and only the steering angle was controlled and
its pose (x, y, θ) was estimated using LiDAR. Pure-Pursuit
Algorithm was used for controlling the steering angle. In this
algorithm, desired steering angle is kinematically calculated
from current (estimated) pose and reference point, which is
ahead of the robot of distance L. We used the path represented
in Fig. 9(c) as the reference path. In Fig. 10, the reference path
and trajectory of the robot are illustrated in red and green line
respectively.

VII. Conclusions and future works

In this paper we modified RRT, one of the most major
sampling-based motion planning algorithms to the cases where
the maximum variation of curvature is constrained. We showed
in both simulation and experiment that our proposed method
generates feasible, smooth paths that include up to one cross-
cut point if necessary. The usage of G1fitting during the
rewiring procedure enabled refinement and optimization that
account for curvature constraint. The quality or trackabiity of
the final path was tested in a path tracking control using Pure-
Pursuit algorithm with a steering type wheeled robots.

The discontinuity of curvature along the path stems from
the usage of G1fitting, because it only connects the angle
continuously. Also our method cannot consider the maximum
or minimum curvature along the path. These problems can be
solved by using G2fitting with clothoid[16] between two nodes
and storing the curvature at each node on the path to the node
as one of its state. From the point of view energy consumption
as discussed in [17], another technique for optimizing the arc
length would be to penalyze the integral of the variation of
curvature, since it corresponds to the change in steering angle
in our case.
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