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Abstract—This paper presents precise control of ball-screw-
driven stages based on projection-based iterative learning control
(ILC). Standard ILC has a problem that only one reference
trajectory can be learned and once the reference trajectory
is changed to other, relearning is required. To overcome this
problem, projection-based ILC using basis functions has been
studied. To apply projection-based ILC to position control of
ball-screw-driven stages, a model of rolling friction is needed.
An approximation of rolling friction is introduced in the previous
study, but this deteriorates control performance. In this paper,
therefore, projection-based ILC using basis functions and data-
based friction model which needs no approximation is proposed.
Simulations and experiments verify the effectiveness of our
proposal.

Index Terms—Iterative learning control, projection-based it-
erative learning control, ball-screw-driven stage, rolling friction
compensation, data-based friction model.

I. INTRODUCTION

Iterative learning control (ILC) [1] is an effective feedfor-
ward control method when the same reference trajectory (task)
is repeated in all trials and disturbance is trial-invariant. In
ILC, feedforward input is updated in every trial to improve
control performance by learning the tracking error of the
previous trial. Even though modeling error and trial-invariant
disturbance exist, control performance can be improved gradu-
ally and owing to this feature, ILC is attracting more and more
attention [2]. However, ILC has a vulnerability to reference
trajectory variation. ILC is effective under the assumption that
the reference trajectory and disturbance are common to each
trial. Once this assumption is violated, ILC cannot improve
control performance. To overcome this problem, ILC using
basis functions have been studied [3], [4]. This type of ILC is
called projection-based ILC.

In this paper, an application of projection-based ILC to
position control of ball-screw-driven stages is considered. Ball-
screw-driven stages, shown in Fig. 1, are feed systems which
convert motor’s rotational motion into stage’s translational
motion. They are widely used in industrial equipment such
as numerically controlled (NC) machine tools. Therefore,
precise position control of ball-screw-driven stages is needed.
However, friction, which is called rolling friction, occurs
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Fig. 1: Overview of a ball-screw-driven stage.
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Fig. 2: Characteristic of rolling friction of ball-screw-driven
stages.

on ball-screw and linear-guide and this friction deteriorates
control performance. As shown in Fig. 2, rolling friction has a
dependency on displacement from the stage’s velocity reversal
point. In region 1 in Fig. 2, nonlinear elastic characteristic
exists. In region 2, rolling friction shows Coulomb friction
Tc which is almost constant. Because of this friction, it is
well known that large error arises when the stage’s velocity
reverses.

Rolling friction compensation is needed for precise control.
In many studies, rolling friction is measured precisely by ultra-
low speed examination and friction models are designed based
on measured data [5]–[7]. Rolling friction can be compensated
if the friction model is designed well. However, rolling friction
depends on environments and operating conditions [8]. If its
characteristic changes from measurement time, rolling friction
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Fig. 3: Picture of the experimental setup. Only the x axis is
used in this paper.
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Fig. 4: Frequency response from motor’s current i [A] to
stage’s position x [m] of the x-axis of the experimental setup
shown in Fig. 3.

cannot be compensated.
This paper, therefore, considers the other approach,

learning-based friction compensation [9]. Projection-based
ILC is adopted to compensate rolling friction. To consider
rolling friction compensation in projection-based ILC, rolling
friction is approximated in the previous study [10]. However,
this approximation deteriorates control performance. There-
fore, to suppress tracking error, projection-based ILC using
basis functions and data-based friction model [11] which
requires no equation model of rolling friction is proposed in
this paper. Our proposal is verified through simulations and
experiments.

II. EXPERIMENTAL SETUP

A. Model of Experimental Setup

Fig. 3 shows our experimental setup. Our experimental setup
has two axes. In this paper, only the x axis is used. According
to frequency response data from motor’s current i [A] to

TABLE I: Parameters of the experimental setup.

Nominal inertia Jn 0.015 kgm2

Nominal viscosity coefficient Dn 0.1Nms rad−1

Torque constant KT 0.715NmA−1

Ball-screw’s lead R 1.91mmrad−1
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Fig. 5: Rolling friction of the experimental setup. Black
points are data measured by ultra-low speed examination
and magenta line denotes simulation model. Note that this
simulation model is only used in simulation.

stage’s position x [m] shown in Fig. 4, nominal model of
our experimental setup is obtained as

Pn(s) =
RKT

Jns2 +Dns
. (1)

Table I shows the meaning and value of each parameter.

B. Rolling Friction of Experimental Setup

Rolling friction of our experimental setup measured by
ultra-low speed examination is shown in Fig. 5. According to
this data, the width of region 1 in Fig. 2 and Coulomb friction
Tc are estimated to be about 10 µm and 3.2Nm, respectively.

III. ITERATIVE LEARNING CONTROL

A. Standard ILC

1) Feedforward Input Update Law: Two-degree-of-freedom
control system shown in Fig. 6 is considered. Tracking error
e is calculated as

e = r − x = Sr − SP (f − d). (2)

Here, S = (1 + CFBP )
−1 is a sensitivity function.

In ILC, the same reference trajectory is repeated in all trials
and disturbance is trial-invariant. In this situation, by using the
jth trial’s feedforward input fj and the tracking error ej , the
next trial’s feedforward input fj+1 is calculated as follows:

fj+1 = Q(fj + Lej). (3)

L and Q are called learning filter and robust filter, respectively.
In this paper, values with subscript j and j +1 denote values
of the jth and j + 1th trial of ILC, respectively.
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Fig. 6: Block diagram of two-degree-of-freedom control sys-
tem. Here, r, x, f , and d denote (position) reference, (position)
output, feedforward input, and disturbance, respectively. P
and CFB denote a plant (linear time-invariant system) and a
feedback controller, respectively. In this paper, d is rolling
friction and P is a ball-screw-driven stage.

2) Tracking Error Convergence: From (2), the jth and j+
1th trial’s tracking error ej , ej+1 are expressed as follows:

ej = Srj − SP (fj − dj), (4)
ej+1 = Srj − SP (fj+1 − dj). (5)

Under the assumption that reference r and disturbance d is
the same in all trials (i.e., rj = rj+1 = r, dj = dj+1 = d), a
recurrence relation (6) can be obtaind from (3), (4), and (5).

ej+1 = Q(1− SPL)ej + (1−Q)(Sr − SPd). (6)

Therefore, the tracking error is monotonically decreases if (7)
is satisfied.

max
ω

∣∣Q(ejω)(1− S
(
ejω
)
L
(
ejω
)
P
(
ejω
))∣∣ < 1. (7)

In this paper, L and Q are designed based on frequency-
domain information [1].

B. Projection-based Iterative Learning Control Using Basis
Functions

A serious problem of standard ILC is that once learned ref-
erence trajectory is changed to other, relearning is needed. To
overcome this problem, projection-based ILC has been studied.
In projection-based ILC, basis functions are introduced. By
parameterizing feedforward input by using basis functions, the
plant’s parameters are estimated in each trial and tolerance to
reference trajectory variation can be obtained.

When a plant is represented as

P (s) =
RKT

Js2 +Ds
, (8)

feedforward input which can suppress tracking error in con-
tinuous time is expressed as (9) if disturbance is ignored.

f =
J

RKT
r̈ +

D

RKT
ṙ

=
[
r̈ ṙ

]  J

RKT
D

RKT

 . (9)

In projection-based ILC, parameterized feedforward input
fp is calculated by using basis functions Ψ(r) and plant’s
parameters θ as follows:

fp = Ψ(r)θ, (10)
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Fig. 7: Real characteristics (black solid line) and approxima-
tion model (magenta dashed line) of rolling friction .

where Ψ(r) ∈ R(N+1)×nθ and θ ∈ Rnθ . r is a reference
trajectory（i.e., r = [r[0] r[1] · · · r[N ]]

>
, r[i] = r(iTs), N :

length of one trial of ILC, Ts: sampling time） . nθ is the
number of the plant’s parameters.

To obtain robustness to reference trajectory variation, the
plant’s parameter estimation is a key issue and projection-
based ILC consists three steps [3].

1) Assume that the current trial’s reference trajectory rj is
repeated in the next trial, and calculate the next trial’s
feedforward input fnp

j+1 by (3).
2) Estimate the plant’s parameters θj+1 by using fnp

j+1 and
Ψ(rj).

3) Update rj → rj+1 and Ψ(rj) → Ψ(rj+1). Then,
calculate the feedforward input fp

j+1 by using Ψ(rj+1)
and θj+1 as follows:

fp
j+1 = Ψ(rj+1)θj+1. (11)

1) Choice of Basis Functions and Plant’s Parameters:
To achieve precise control of ball-screw-driven stages, rolling
friction must be compensated. To compensate rolling friction
by projection-based ILC, its approximation is introduced [10].
Rolling friction whose real characteristics are shown as the
black solid line in Fig. 7 is approximated as the magenta
dashed line in Fig. 7. Owing to this approximation, rolling
friction Trf = d can be parameterized as follows:

Trf ≈ sign(ẋ(t)) ·min

(
2Tc
xµ

xr − Tc, Tc

)
/KT

=
Tc
KT
· sign(ẋ(t))min

(
2

xµ
xr − 1, 1

)
=

Tc
KT
· brf(t), (12)

where

brf(t) = sign(ẋ(t))min

(
2

xµ
xr − 1, 1

)
. (13)

xµ is a tuning parameter which has a role to compensate
nonlinear elastic characteristic of rolling friction. xr denotes
displacement from stage’s velocity reversal point. In (12),
rolling friction is divided by torque constant KT to convert
its unit from [Nm] to [A].



According to (9) and (12), basis functions Ψ(r) and plant’s
parameters θ are given by (14a) and (14b), respectively.
Note that brf [i] = brf(iTs) is calculated based on reference
trajectory r.

Ψ(r) =


r̈[0] ṙ[0] brf [0]
r̈[1] ṙ[1] brf [1]

...
...

...
r̈[N ] ṙ[N ] brf [N ]

 , (14a)

θ =

[
J

RKT

D

RKT

Tc
KT

]>
. (14b)

2) Plant’s Parameter Estimation: Plant’s parameters are
estimated by using predicted tracking error [3]. According to
(2), jth trial’s tracking error ej is expressed as (15) using
lifted system representation.

ej = Srj − SP(fj − dj), (15)

where P and S are convolution matrices of P and S, re-
spectively. In the same way as (15), when fnp

j+1 is applied as
feedforward input under the condition that reference is rj and
disturbance is dj , tracking error enpj is expressed as follows:

enpj = Srj − SP
(
fnp
j+1 − dj

)
. (16)

Therefore, enpj can be predicted as ênpj by (15) and (16) using
nominal model.

ênpj = ej − SnPn
(
fnp
j+1 − fj

)
. (17)

Here, subscript n denotes nominal model.
Furthermore, when Ψ(rj)θj+1 is applied as feedforward

input, tracking error can be also predicted as follows:

êpj = ej − SnPn(Ψ(rj)θj+1 − fj). (18)

According to [3], plant’s parameters θj+1 are estimated by
solving (19). This optimization problem can be solved by the
least squares method.

min
θj+1

∣∣∣∣ênpj − êpj ∣∣∣∣2
⇒ min

θj+1

∣∣∣∣SnPnfnp
j+1 − SnPnΨ(rj)θj+1

∣∣∣∣
2

(19)

C. Our Proposal – Basis Functions and Data-based Friction
Model Approach

In (19), the approximation model of rolling friction is used
for parameterization. Due to this approximation, modeling
error of rolling friction exists and this may deteriorate control
performance. In this paper, to avoid modeling error of rolling
friction, the data-based friction model [11] is introduced.
Unlike the other rolling friction models, this model uses
a friction table instead of equations. The friction table, as
shown in Fig. 8, stores displacement from the stage’s velocity
reversal point and rolling friction to realize the nonlinear
elastic characteristic of rolling friction. The proposed method
consists following five steps.

1) Calculate fnp
j+1.

2) Estimate θj+1.
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...
...
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Fig. 8: Concept of friction table for data-based friction model.
Nonlinear elastic characteristic of rolling friction (left) is
represented as table (right) without any approximations.

3) Estimate the rolling friction T̂rf,j+1 as follows:

T̂rf,j+1 =

(
fnp
j+1 −

Ĵj+1

RKT
r̈j −

D̂j+1

RKT
ṙj

)
KT , (20)

where θj+1 =
[
Ĵj+1

RKT

D̂j+1

RKT

T̂cj+1

KT

]>
.

4) Obtain the friction table from rj and T̂rf,j+1 as Fig. 8.
5) Update rj → rj+1 and Ψ(rj) → Ψ(rj+1). Then,

calculate the feedforward input fp
j+1 by using Ψ(rj+1),

θj+1, and obtained friction table. When rj+1 6= rj ,
the closest value of the friction table is used for rolling
friction compensation.

To make the friction table in each trial, the plant’s param-
eters need to be estimated precisely because modeling error
cannot be ignored in practical use speed [12]. In (19), the
plant’s parameters are estimated by using the approximation
model of rolling friction, but this approximation may have a
bad influence on the plant’s parameter estimation. Therefore,
another estimation method is proposed.

To eliminate the influence of rolling friction approximation
in the plant’s parameter estimation, a weighting matrix Wj

is introduced. Then, instead of (19), another optimization
problem (21) is solved to determine plant’s parameters θj+1.

min
θj+1

∣∣∣∣∣∣SnPnfnp
j+1 − SnPnf

p

j+1(rj , Wj)
∣∣∣∣∣∣
2
, (21)

f
p

j+1(rj , Wj) =WjΨ(rj)θj+1 + (I −Wj)f
np
j+1. (22)

Equation (21) can be rewritten as (23) and (23) can be also
solved by the least squares method.

min
θj+1

∣∣∣∣SnPnWjf
np
j+1 − SnPnWjΨ(rj)θj+1

∣∣∣∣
2

(23)

The weighting matrix Wj is determined based on rj . By
designing proper weighting matrix Wj , the influence of non-
linear elastic characteristic of rolling friction can be suppressed
in the estimation step and thus the plant’s parameters can be
estimated precisely. Design method of Wj is described in the
next section.



IV. SIMULATION

Simulations are conducted to verify effectiveness of our
proposal. Through simulations, following three methods are
compared.
• Standard ILC (S-ILC): Feedforward input is calculated

as (3). No basis functions are used.
• Projection-based ILC using the basis functions (P-ILC

(B.F.)): The plant’s parameters are estimated by (19) and
feedforward input is calculated as (11).

• Projection-based ILC using the basis functions and
the data-based friction model (friction table) (P-ILC
(B.F.+F.T.)): The plant’s parameters are estimated by (23)
and feedforward input is calculated using friction table.
This method is our proposal.

The sampling time Ts is set to 1ms.

A. Conditions
1) Simulation Plant and Nominal model: The nominal

model is shown as Fig. 4 and its parameter is shown in (I). The
simulation plant has parametric modeling error: J = 0.8Jn
and D = 1.2Dn.

The rolling friction model used in the simulations is shown
in Fig. 5. The width of region 1 showing nonlinear elastic
characteristic is about 10 µm and Coulomb friction Tc is
3.2Nm.

2) Design of Feedback Controller: Feedback controller
CFB is a PID controller designed to have 30Hz closed loop
multiple poles by the pole placement method. It is discretized
by the Tustin transformation with sampling time Ts.

3) Design of Learning Filter and Robust Filter: Learning
filter L(z) is designed as zero-phase tracking error controller
[13] of SnPn. In addition, robust filter Q(z) is NQth-order
zero-phase low-pass filter.

Q(z) =

(
z + 2 + z−1

4

)NQ
. (24)

Q(z) is non-causal and to realize Q(z), Qr(z) with NQ

samples delay compensation of the memory is implemented.

Qr(z) = Q(z) · z−NQ . (25)

To satisfy ILC’s monotonic convergence condition (7), NQ is
set to be 16.

4) Position Reference Trajectories and Basis Functions: To
verify robustness to reference trajectory variation, two types
of position reference trajectories are used. First, “Ref. 1” in
Fig. 9a is used and learned until the 5th trial. From the 6th
trial, the reference trajectory is changed from “Ref. 1” to “Ref.
2”. From the position references shown in Fig. 9a, each basis
function is obtained as Fig. 9b–9d. Here, the tuning parameter
xµ is set to be 5 µm.

5) Design of Weighting Matrix: The weighting matrix Wj

is designed as

Wj = diag
(
wj [0] wj [1] · · · wj [N ]

)
, (26)

wj [i] =

{
1 (xr,j [i] > 100 µm)
0 (otherwise)

, (27)

where xr,j is displacement from stage’s velocity reversal point.
xr,j is calculated from position reference rj . By introducing
Wj , the plant’s parameters can be estimated from only infor-
mation of the region where rolling friction shows Coulomb
friction.

6) Design of Data-based Friction Model: The friction
table for the data-based friction model is generated using
information in the region where displacement from the stage’s
velocity reversal point is within 100 µm. Then, feedforward
input is calculated by using the data-based friction model. On
the other hand, in the region where the displacement is over
100 µm, the feedforward input is calculated by using estimated
Coulomb friction.

B. Results

The simulation results are shown in Fig. 10. Fig. 10a and
10b show Root-mean-square (RMS) and maximum (MAX)
value of each trial’s tracking error. These figures show that
projection-based ILC can handle various reference trajectories,
while standard ILC needs relearning after the reference trajec-
tory is changed from “Ref. 1” to “Ref. 2”. Fig. 10c and 10d
show the tracking error of 1st trial after the reference trajectory
variation. According to them, it can be said that tracking error
decreases by using the data-based friction model.

The effectiveness of our proposal is verified by simulations.

V. EXPERIMENT

Experiments are conducted under the same conditions as
simulations. Experimental results are shown in Fig. 11 and
show the same tendency as simulation. Experiments also verify
the effectiveness of our proposal.

However, compared to standard ILC, projection-based ILC
using basis functions and data-based friction model deterio-
rates a little after convergence. It can be thought that this
deterioration is caused by unmodeled dynamics, disturbance,
and noise.

VI. CONCLUSION

ILC is a very effective tracking control method under the
assumption that the same reference trajectory is repeated in
each trial. However, once this assumption is violated, ILC
cannot enhance control performance. To overcome this prob-
lem, studies on projection-based ILC have been conducted. In
this paper, an application of projection-based ILC to position
control of ball-screw-driven stages is considered. To suppress
large tracking error caused by rolling friction, projection-based
ILC using basis functions and data-based friction model is
proposed. In this method, by estimating the plant’s parameters
and rolling friction in each trial, precise control can be
achieved. The effectiveness of our proposal is verified through
simulations and experiments. Verification in other situations
(e.g. other reference trajectories) and proof of convergence of
our proposal are future work.
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Fig. 9: Position reference trajectories and basis functions. First, “Ref. 1” is used and then, “Ref. 2” is used from 6th trial.
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(d) Enlarged view of Fig. 10c.

Fig. 10: Simulation results.
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Fig. 11: Experimental results.
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