半離散化法モデルに基づいたリアルタイム適応びびり回避による 切削加工におけるびびり振動抑制の基礎検討

下田隆貴*,藤本博志(東京大学)

Basic study on chatter vibration suppression by real-time adaptive chatter avoidance based on semi-discretization method Takaki Shimoda^{*}, Hiroshi Fujimoto (The University of Tokyo)

Abstract

Chatter vibration is known as undesirable phenomenon in cutting process, which consists of both self-excited and forced chatter. In previous researches, out-of-process chatter analysis and in-process self-excited chatter suppression were studied. However, the former was subject to model mismatches, and the latter couldn't be applied to forced chatter. This paper proposes automatic spindle speed selection to suppress self-excited and forced chatter using a semi-discretization model and an adaptive filter. Then proposed method is evaluated by simulations and experiments.

キーワード:びびり振動,切削加工,振動抑制,適応フィルタ,リアルタイム,半離散化法

(Chatter vibration, Cutting process, Vibration suppression, Adaptive filter, Real-time, Semi-discretization method)

1. はじめに

切削加工とは製品の機械的加工の一つであり,古くから 生産現場で広く使われてきた。切削加工はなるべく高能率 かつ高精度であることが望ましいが,切削中にびびり振動 と呼ばれる不要な振動が生じるため,能率と精度が著しく 低下してしまう。このびびり振動は加工面や仕上げ面の性 状を劣化させる。また増幅された切削力により,異常損耗 や欠損,機械の破壊も引き起こす⁽¹⁾。びびり振動には,系 の不安定性に起因する自励びびり振動⁽²⁾ と,何らかの強制 振動源に起因する強制びびり振動⁽³⁾ がある。

びびり振動の抑制には,切削深さなどの切削条件を制限 し,加工能率を落としてびびり振動を回避する非効率的な 対処法が一般的である。そのため加工能率を下げずにびび り振動を回避しようとする研究が多く行われている。それ らは大別すると解析予測,抑制,検出と回避の3種に分類 できる。自励びびり振動の解析予測については,事前に得 られた安定性解析を元にして,予め自励びびり振動が起こ らないような条件で切削することが目的である⁽¹⁾⁽⁴⁾。びび り振動の抑制についてはハードウェアの工夫やソフトウェ ア(制御)の工夫によるもの⁽⁸⁾がある。自励びびり振動の検 出と回避については,センサの情報によってびびり振動を 検出し⁽⁵⁾,主軸速度を変化させるものがある⁽⁶⁾⁽⁷⁾。

ー般にノミナルプラントと実プラントには何らかの乖離 がある。特に共振周波数は同定誤差,機械の状態,経年劣 化や熱に敏感で,このために事前の安定解析などが現実に 則さなくなることがよくある⁽⁵⁾。そこで加工プロセス中の みの情報を用いて,主軸回転速度を適応的に変化させ,び びり振動を回避しようとする研究がなされている⁽⁶⁾。モデ ルを必要とせず,かつ加工能率を変えることなくびびり振 動を回避できるのがその利点であった。

従来では回避においては加工プロセス中情報だけが用い

られており,モデルベースの解析はなされていない⁽⁶⁾。その ため自励びびりの回避はなされていたが,しかしながら安 定の度合いなどが議論されなかったために,振動の抑制が 不十分になることがあった。その解析がなされていなかっ たのは,従来の解析ではびびり振動の強さを統一的に示す 指標を求めることができなかったためである。

そこで本研究ではその指標を求めるために,半離散化法⁽⁴⁾ に基づいたマルチレート解析法を提案する。そしてその加 エプロセス外で得た解析に基づきびびり振動の回避ととも に振動を最小化する,加工プロセス中の適応フィルタによ る共振周波数の誤差に対するロバストなリアルタイムびび り振動の回避法を提案する。シミュレーションと実験によ りその有効性を示す。

2. 二自由度ミリングのモデリング

本研究では二自由度ミリングを扱う。図 1a に二自由度 ミリングを示す。ミリングの運動方程式は式 (1) で表現さ れる。

where

ただし *x*, *y* は, 主軸の *x*, *y* 軸方向の変位 [m] である。ま た *F*。は切削力ベクトルでありツールが *x*, *y* 方向に受ける 力 [N] を表している。また *M*, *C*, *K* は等価質量行列,等 価粘性行列,等価剛性行列である。

切削力ベクトルは各刃の力の総和として,式(3)で表現 される⁽⁴⁾。ただし *K*_f は比切削抵抗行列である。また *h*₀ は 設定切取量ベクトルである。

$$\boldsymbol{F}_{c}(t) = a_{p}\boldsymbol{K}_{f}(t)(-\boldsymbol{q}(t) + \boldsymbol{q}(t - \tau(t)) + \boldsymbol{h}_{0}(t)) \cdot \cdot (3)$$

where

ただし $u_{f}(t)$ は毎刃送り量 $[m], \tau(t)$ は今回と前回の刃の経路の間の時間差[s]であり,式(6)を満たす⁽⁸⁾。ただしツールの刃数をqとした。

 a_p は軸方向切り込み (axial depth of cut)[m] であり, K_t, K_r はそれぞれ接線方向,法線方向の切削比抵抗 [Pa] である。 $g_j(t)$ はスクリーン関数であり, j 番目の刃が当たっている 時は1,そうでない時は0を返す。また $\phi_j(t)$ はj 番目の刃 の角度である。また ω_{sp} は主軸速度 [rad/s] を表す。

図 1b に自由度ミリングのブロック線図を示す。ただし θ_{sp} はスピンドルの角度を表す。内部遅れのあるフィード バックがプラントに内在するので,切削深さを深く取ると 系は不安定になる⁽¹⁾が,これによる振動は自励びびり振動 と呼ばれ,また設定切取量などの外乱による振動は強制び びり振動と呼ばれる⁽³⁾。

3. 半離散化に基づいたびびり振動のマルチレート解析法 本節では,半離散化に基づいたびびり振動のマルチレー ト解析法を提案する。この手法により,自励びびり振動と 強制びびり振動の統一的な評価が可能になる。

式(3)を式(1)に代入し状態空間表現すると式(7)になる。

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}_1(t)\boldsymbol{x}(t) + \boldsymbol{A}_2(t)\boldsymbol{x}(t-\tau(t)) + \boldsymbol{B}(t)\boldsymbol{u}(t)$$
(7)

where

$\boldsymbol{x}(t) =$	$[\boldsymbol{q}(t)^T]$	$\dot{\boldsymbol{q}}(t)^T$	r 		(8)
$\boldsymbol{u}(t) = \boldsymbol{b}$	$h_0(t) \cdots$				(9)
$A_1(t) =$	$\left[-(M^{-}$	O $^{1}(K + a)$	$u_{ m p}oldsymbol{K}_{ m f}(t)))$	$I \ -M^{-1}$	C (10)
$A_2(t) =$	$\begin{bmatrix} oldsymbol{\ell} & & \ a_{\mathrm{p}} oldsymbol{M}^{-1} & & \ a_{\mathrm{p}} oldsymbol{M}^{-1} \end{bmatrix}$	$\mathbf{D}^{1} \mathbf{K}_{\mathrm{f}}(t)$	$\begin{bmatrix} o \\ o \end{bmatrix} \dots$		····(11)

本研究では,簡単のために主軸速度 ω_{sp} を一定と仮定する。その時式 (6) から $\tau(t) = \frac{2\pi}{q\omega_{sp}} \equiv \tau$ と一定になる。このとき式 (5)の定義から $K_{\rm f}(t)$ が τ 周期時変であるので, $A_1(t), A_2(t), B(t)$ はすべて τ 周期時変の行列である。

ここで式(7)を離散化を用い近似すると,近似的に式(13) が成立する⁽²⁾。遅延の近似には半離散化法,周期時変な行 列にはサンプリング時間における平均値を用いた。

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}_{1i}\boldsymbol{x}(t) + \boldsymbol{A}_{2i}\boldsymbol{x}_{\tau_i} + \boldsymbol{B}_i\boldsymbol{u}(t) \ (t \in [i\Delta t, (i+1)\Delta t))(13)$$

where

ただし半離散化のサンプリング周期は $\Delta t \ge 0$,なおかつ十 分に大きい整数 k をもって $\tau = k\Delta t$ が成立するとする。また x(t) に対して, $x[i] = x(i\Delta t)$ とする。半離散化法においては $t \in [i\Delta t, (i+1)\Delta t)$ の間で,遅延 $x(t-\tau(t))$ は $(i+1/2)\Delta t$ から,遅延 $\tau = k\Delta t$ だけ遅れた $x((i+1/2)\Delta t-\tau)$ の 近似値である x_{τ} によって近似されている。また同じく $t \in [i\Delta t, (i+1)\Delta t)$ の間で $A_1(t), A_2(t), B(t)$ は式 (14), 式 (15),式 (16) により近似されている。

ここで今度は式 (13) をサンプリング周期 Δt でゼロ次ホールド離散化すると式 (18) が成立する。ただし u(t) は Δt だけの間,一定値 u[i] で近似できるとした。

$$\boldsymbol{x}[i+1] = \boldsymbol{P}_i \boldsymbol{x}[i] + \boldsymbol{R}_i \boldsymbol{x}_{\tau_i} + \boldsymbol{Q}_i \boldsymbol{u}[i] \cdots \cdots \cdots \cdots (18)$$

where

$$\boldsymbol{R}_{i} = (\exp(\boldsymbol{A}_{1i}\Delta t) - \boldsymbol{I})\boldsymbol{A}_{1i}^{-1}\boldsymbol{A}_{2i} \quad \dots \quad (20)$$

式 (22) のようにリフティングすると,式 (18) と同値な式と して式 (23) が成立する。ただし D_i の定義は式 (24) であり, 2k + 4行2k + 4列の行列である。 $P_{imn}, R_{imn}(m, n$ は整数) は P_i, R_i のm行n列目の成分である。また O_{mn}, I_{mn} は それぞれm行n列の零行列,単位行列である。

$$\boldsymbol{z}[i] = [\boldsymbol{q}^{T}[i] \quad \boldsymbol{\dot{q}}^{T}[i] \quad \boldsymbol{q}^{T}[i-1] \quad \boldsymbol{q}^{T}[i-2]$$
$$\cdots \quad \boldsymbol{q}^{T}[i-k] \quad]^{T} \cdots \cdots \cdots (22)$$
$$\boldsymbol{z}[i+1] = \boldsymbol{D}_{i}\boldsymbol{z}[i] + \boldsymbol{E}_{i}\boldsymbol{u}[i] \cdots \cdots \cdots \cdots \cdots \cdots \cdots (23)$$

where

$$\boldsymbol{D}_{i} = \begin{bmatrix} \boldsymbol{P}_{i} & \boldsymbol{T}_{i} & \boldsymbol{O}_{4,2} \\ \hline \boldsymbol{S} & \boldsymbol{O}_{2,2k-2} & \boldsymbol{O}_{2,2} \\ \hline \boldsymbol{O}_{2k-2,4} & \boldsymbol{I}_{2k-2,2k-2} & \boldsymbol{O}_{2k-2,2} \end{bmatrix} \cdots (24)$$
$$\boldsymbol{E}_{i} = [\boldsymbol{B}_{i}^{T} \quad \boldsymbol{O}^{T} \quad \cdots \quad \boldsymbol{O}^{T}]^{T} \quad \cdots \quad \cdots \quad (25)$$

with

ここで式(14),式(15),式(16)は k ステップ周期時変ゆ えに,式(23)はシングルレート k ステップ周期時変系で ある。リフティングによりシングルレート離散時間周期時 変系はマルチレート離散時間時不変系に変換できるので⁽⁹⁾, 式(23)の系は k ステップのマルチレート時不変系として式 (28)で表現することができる。

$$\boldsymbol{z}[k(i+1)] = \boldsymbol{F}\boldsymbol{z}[ki] + \boldsymbol{G}\boldsymbol{U}[ki] \cdots \cdots \cdots \cdots \cdots (28)$$

where

with

$$\mathbf{\Phi}(l) = \begin{cases} \mathbf{I} \ (l=0) & \dots \\ \mathbf{D}_{k-1} \cdots \mathbf{D}_{k-l} \ (else) & \dots \end{cases}$$
(32)

遷移行列 F は時不変であり,この行列の固有値の最大値に より,系の安定性が定まる。F の最大特異値(固有値の絶 対値の最大値)が1より大きければ不安定,1であれば安定 限界,1より小さければ安定であるということである。

*z*は*x*と*y*の両方の変数を含んでいるが,表面の粗さの みを評価するために出力をy方向の変位に取る。

ゆえに

	0	1	0						0	
	0	0	0	0	0	1	0	•••	0	
H =	:	÷	÷	÷	÷	·	·	·	÷	(34)
	0					0	1	0	0	
	0					0	0	0	1	

もはや系はLTIとして記述されているため,式(28)と式(33)から,長いレートkを1ステップとする次の伝達関数行列を定義することができる。

$\boldsymbol{G}_{\mathrm{fc}}[\boldsymbol{z}] = \boldsymbol{H}(\boldsymbol{z}\boldsymbol{I} - \boldsymbol{F})^{-1}\boldsymbol{G}\cdots$	(35)
$\boldsymbol{G}_{\mathrm{sc}}[z] = \boldsymbol{H}(z\boldsymbol{I} - \boldsymbol{F})^{-1}\boldsymbol{I}\cdots$	(36)

式 (35) は入力に対する応答を決定し,式 (36) は初期値応 答を決定する。ゆえに前者は強制びびり,後者は自励びび りに関係する伝達関数行列ということができる。特に強制 びびりに関しては,入力である毎刃送り量は一般に一定に なるので,直流成分をあらわす G_{fc}[1] を考慮すればよい。 このようにして,本提案手法では自励びびり振動と強制び びり振動を同じ枠組みの中で議論する事が可能である。

4. 解析結果 と適応フィルタ を用いたびびり回避

4・1 パラメタ推定による検出法 加速度センサによ リツールの y 方向加速度 $a(t) [m/s^2]$ を測定することを考え る。サンプリング周期を t_s とし, $a[i] = a(it_s)$ (i = 0, 1, 2...) とする。加速度 a は自励びびり振動要因のそれである a_u と,強制びびり振動要因のそれである a_p の和のモデルとし て表現される。つまり式 (37) のようになる。

where

with

ただし e[i] は平均 0 の白色ガウス雑音である。 $\frac{1}{D(z)}$ は自励 びびり振動を表現する安定な伝達関数である。 N_d は D(z)の次数である。またパラメタベクトルを式 (40) で定義する。 $\theta_p[i]$ は自励びびりに関するパラメタベクトルである。

4・2 自励びびり振動の検出 まず加速度から強制 びびり振動要因のそれと自励びびり要因のそれを分離する 方法を議論する。一般に強制びびりは数百ヘルツ以下であ り,自励びびりは数千ヘルツになることが多いので⁽³⁾,八 イパスフィルタを用いることでそれは達成される。これに より推定された自励びびり要因の加速度を â_u[i] とする。

 $\theta_u[i]$ の推定について,式(38)から真のパラメタベクトル $\overline{\theta}_u$ は式(41),式(42)の状態方程式に従うと仮定できる。

with

$$\boldsymbol{\phi}_{u}[i] = \begin{bmatrix} -\hat{a}_{u}[i-1] & \cdots & -\hat{a}_{u}[i-N_{d}] \end{bmatrix}^{T} \cdots (43)$$

またv[i], w[i] は平均0で分散 $R_v[i], R_w[i]$, 共分散Oを持つ白色ガウス雑音である。そしてさらにv[i], w[i] は状態変数の初期値と独立であるとする。

式 (41),式 (42)の状態方程式から,カルマンフィルタに よりステップ i > 0において,パラメタベクトルは式 (44) により推定される ⁽⁶⁾。

$$\boldsymbol{\theta}_{u}[i+1] = \boldsymbol{\theta}_{u}[i] + \boldsymbol{g}[i](\hat{a}_{u}[i] - \boldsymbol{\phi}_{u}^{T}[i]\boldsymbol{\theta}_{u}[i]) \cdots \cdots (44)$$

where

$$\boldsymbol{g}[i] = \frac{(\boldsymbol{P}[i-1] + \boldsymbol{R}_{v}[i])\boldsymbol{\phi}_{u}[i]}{\boldsymbol{\phi}_{u}^{T}[i](\boldsymbol{P}[i-1] + \boldsymbol{R}_{v}[i])\boldsymbol{\phi}_{u}[i] + \boldsymbol{R}_{w}[i]} \cdots (45)$$
$$\boldsymbol{P}[i] = (\boldsymbol{I} - \boldsymbol{g}[i]\boldsymbol{\phi}^{T}[i])(\boldsymbol{P}[i-1] + \boldsymbol{R}_{v}[i]) \cdots \cdots (46)$$

ただし P[i] は誤差共分散行列で, g[i] はカルマンゲイン行 列で初期値は零である。またパラメタベクトルの初期値も 零とする。以上より式 (40) のパラメタベクトルが推定され る。このカルマンフィルタによる推定は,推定された自励 びびり要因の加速度のパワーに相当する $\hat{a}_{u}^{2}[i]$ がある任意 の閾値 σ_{th} を超えた時に開始されるものとする。

支配的な自励びびり振動数は以下のように計算される。 ただし α は推定された D(z) の支配根である。

以上の適応推定過程を図2に示す。

4·3 安定ポケットを用いた回避法(従来法)⁽⁶⁾ 安定 ポケットを用いて自励びびり振動を回避する方法を示す⁽⁶⁾。

まず支配的なびびり振動の周波数と刃通過周波数 $f_{\text{TPE}} \equiv q\omega_{\text{sp}}/(2\pi)$ の関係を式 (48) に示す ⁽⁶⁾。ただし ρ はロープ番号, ϵ は支配的な自励びびりとの刃通過周波数の位相のずれ [rad] である。

ところで $\epsilon = 0$ の時が,安定ローブ線図の安定限界の極 大点 (安定ポケットと呼ばれる)であるので, $\epsilon = 0$ として, 計算すれば安定ポケット下の条件を導出できる⁽⁶⁾。

 $\rho_{\text{new}}[i] = \text{round}\left(\frac{f_{\text{chat}}[i]}{f_{\text{TPE}}[i]}\right) \dots (49)$ $\omega_{\text{new}}^{\text{conv}}[i] = \frac{2\pi f_{\text{chat}}[i]}{\rho_{\text{new}}[i]q} \dots (50)$

ただし ω_{new}^{conv} が安定ポケット条件下の主軸速度で, ρ_{new} が 新しいロープ番号である。 $round(\cdot)$ は四捨五入の値を返す 関数である。四捨五入により最近傍の安定ポケット下の主 軸速度を求めることができる。

この手法では確かに,事前の共振周波数の同定を必要と せずに自励びびり振動の回避が可能だが,しかしながら強 制びびり振動については全く考えられておらず,さらにど の程度振動を抑えられるかということも指定できない。

4・4 解析結果を活用する回避法 (提案手法) σ_{\max} を強制びびりに指標として $H(I - F)^{-1}G$ の最大特異値, λ_{\max} を自励びびりの指標として F の最大特異値とする。 以下のような評価関数 J_{ρ} を定義する。 J_{ρ} はロープ番号

図.2: 自励びびり振動推定とその回避

Fig. 2. Estimation and avoidance of self-excited chatter.

図. 3: $J_{\rho} \succeq \arg \min J_{7}$ のマップ [dB] Fig. 3. map of J_{ρ} and $\arg \min J_{7}$ [dB].

 ρ における自励びびり振動と強制びびり振動のそれぞれの 重みの和である。 J_{ρ} は系が不安定な場合は無限大とする。 また α, β は重みである。

$$J_{\rho} = 20\alpha \log_{10}(\sigma_{\max}) - 20\beta \log_{10}(1 - \lambda_{\max}) \cdots (51)$$

提案手法では従来法の指令速度に対してある実数 γ を 掛けて,ある a_p に対して arg min J_ρ なる速度になるよう にする。こうして共振周波数の同定をせずに,びびり振動 を低減することを目的とする。 γ については,それぞれの (ρ_{new}, a_p) ペア毎にテーブルを記録しておき,必要な都度参 照することにする。

この手法では従来法とは異なり,自励びびり振動と強制び びり振動の両方の強弱が重み付けにより同時に評価される。

図 3 に J_{ρ} と arg min J_7 の値を示す。ただし表 1 のパラメ タを用いた。図 3 から例えば $a_{\rm p} = 0.0015$ の場合 J_7 の値を 最小化するのは, $\gamma \sim 0.98$ 程度であることが分かる。

5. シミュレーション結果

実験装置を図 4a に示す。ツールには三菱マテリア ル 4MCD1200,加速度センサにはツール上部の PCB PIEZOTRONICS A17 を用いた。PCB PIEZOTRONICS

(a) 実験装置 (a)Equiment.

(b) ツール FRF 測定とノミナル モデル
(b)Tool FRF mesurement and its nominal model.

図. 4: 実験装置 Fig. 4. Experimental equipment.

086C01 インパルスハンマと OROS OR34 アンプにより図 4bのツールの周波数応答を取得した。被切削材にはアルミ 合金 A6063 を用いた。本研究で使用するツールのモデルや カルマンフィルタに関するパラメタは表1にまとめられて いる。4・2 節で述べた HPF はカットオフ周波数100 Hz で 設計した。またステージ速度制御系,主軸速度制御系は40 Hz の帯域を持つように設計した。提案手法におけるγを求 めるのには図3を用いている。

シミュレーションでは 2800 rpm で運転開始する。図 3 よ り,軸方向切込が 1.5mm の場合不安定になることが分かる。 従来法 (conv.) と提案手法 (prop.) における加速度,その FFT 結果,主軸速度, f_{sp}をそれぞれ図 5a,5b,5c,5d に示す。 またその時の RMS と FFT の結果を表 2 に示す。図 5c と表 2 より従来法と提案手法の両方で自励びびり振動を回避で きていることが分かる。また従来法と提案手法を比べると, RMS 比で 40%提案手法において振動が低減されていること が分かる。

6. 実験結果

パラメタや加工条件は 5 節と同じとする。主軸速度一定 時 (const.), 従来法 (conv.) と提案手法 (prop.)の加速度, そ の FFT 結果, FFT 結果の詳細な比較, 主軸速度, $f_{\rm sp}$, $\rho_{\rm new}$ の実験結果をそれぞれ図 6a, 6b, 6c, 6d, 6e, 6f に示す。 またその時の RMS と FFT の結果を表 2 に示す。周波数領 域で従来法,提案手法ともに最大値比 75%から 85%ほど, また RMS 比でもそれぞれ 54%, 67%振動が低減されてお り, びびり振動を自動回避出来ていることが分かる。提案 手法では, 主軸速度を比較すると図 3 の J7 を最小にするよ うな従来法の 0.98 倍ほどの速度になっている。これにより 提案手法では従来法よりも周波数領域最大値比 29%, RMS 比 27%振動が低減されている。

7. 結 論

本稿では自励,強制びびり振動の統一的な評価法を提案 した。そしてびびり振動を最小化するような主軸速度の自 動選択法を提案した。実際に切削加工を行い,提案手法が 自動的にびびり振動を回避し,なおかつ従来法と比較して

表. 1: シミュレーションと実験のパラメタ Table 1. Simulation and experimental parameters.

(a) 機械系のパラメタ
(a)Mechanical paramters.

(b) 適用フィルタパラメタ (b)Adaptive filter's param-

eters.

Symbol		Symbol	
M	0.40 I [kg]	t_s	125 [μs]
C	0.012 <i>I</i> [Ns/m]	N_d	2
K	32.5 <i>I</i> [MN/m]	$oldsymbol{R}_v$	$10^{-16} I$
Kt	0.980 [GPa]	R_w	0.3
Kr	0.294 [GPa]	$\boldsymbol{P}\left[0 ight]$	$10^{-4} I$
q	4	$\sigma_{ m th}$	$121 [m^2/s^2]$
Axial depth of cut $a_{\rm p}$	1.5 [mm]	α	2
Radial depth of cut	7 [mm]	β	1
Diameter of tool	12 [mm]		
Stage feed velocity	0.5 [mm/s]		

表. 2: シミュレーションと実験における y 軸加速度の RMS 値 (RMS) と周波数成分最大値 (max FFT) 結果 Table 2. RMS value(RMS) and maximum value of frequency component(max FFT) of y-axis acceleration in simulations and

experiments.

Condition	Simulation	Experiment
RMS const.	63.1 km/s ²	11.5 m/s^2
RMS conv.	2.75 m/s^2	5.29 m/s^2
RMS prop.	1.60 m/s^2	3.89 m/s^2
max FFT const.	34.8 km/s ²	3.83 m/s^2
max FFT conv.	0.252 m/s^2	0.693 m/s^2
max FFT prop.	0.234 m/s^2	0.500 m/s^2

さらに振動の低減を実現していることが確認された。本手 法では、半離散化法に基づいたマルチレート解析が必要に なるが、共振周波数の同定誤差に対してロバストに、なお かつ加工能率を下げずによりびびり振動を自動的に抑える ことができる。この提案法によって、加工能率や精度の向上 が期待される。今後は本提案法に主軸速度変動制御など^(®) を取り込み、さらなるびびり振動の抑制を達成させる。

謝辞

本研究では, DMG 森精機株式会社の熊谷典大様, 寺田祐 貴様から多くのご支援を頂いた。記して謝意を表する。

参考文献

- (1) Y. Altintas, and M. Weck: "Chatter stability of metal cutting and grinding", CIRP Annals-Manufacturing Technology, vol.53, no.2, pp.619-642 (2004)
- (2) T. Insperger, J. Gradišek, M. Kalveram, G. Stèpàn, K. Winert, and E. Govekar: "Machine tool chatter and surface location error in milling processes", Journal of Manufacturing Science and Engineering, vol.128, no.4, pp.913-920 (2006)
- (3) N. Suzuki, T. Ikada, R. Hino, and E. Shamoto: "Comprehensive Study on Milling Conditions to Avoid Forced/ Self-Excited

Fig. 6. Experimental results (const.:constant speed, conv.:conventional method, prop.:proposal method).

Chatter Vibrations", Journal of the Japan Society for Precision Engineering, vol.75, no.7, pp.908-914 (2009)

- (4) T. Insperger, and G. Stèpàn: "Updated semi discretization method for periodic delay differential equations with discrete delay", International Journal for Numerical Methods in Engineering, vol.61, no.1, pp.117-141 (2004)
- (5) Y. Kakinuma, Y. Sudo, and T. Aoyama: "Detection of chatter vibration in end milling applying disturbance observer", CIRP Annals-Manufacturing Technology, vol.60, no.1, pp.109-112 (2011)
- (6) N. J. M. Van Dijk, E. J. J. Doppenberg, R. P. H. Faassen, N. van de Wouw, J. A. J. Oosterling, and H. Nijmeijer: "Automatic

in-process chatter avoidance in the high-speed milling process", Journal of Dynamic Systems, Measurement, and Control, vol.132, no.3, pp.1-14 (2010)

- (7) T. Yoneoka, Y. Kakinuma, K. Ohnishi, and T. Aoyama: "Disturbance Observer Based In-process Detection and Suppression of Chatter Vibration", Procedia CIRP, 1, pp.44-49 (2012)
- (8) S. Seguy, T. Insperger, L. Arnaud, G. Dessein, and G. Peignè: "Suppression of period doubling chatter in high-speed milling by spindle speed variation", Machining Science and Technology, vol.15, no.2, pp.153-171 (2011)
- (9) P. Misra: "Time-invariant representation of discrete periodic systems", Automatica, vol.32, no.2, pp.267-272 (1996)