論文

共振を用いた磁界結合回路における電力伝送と磁束の関係

正員 居村 岳広*

Relation between Power Transfer and Magnetic Flux in Magnetic Coupling Circuit Using Resonance Takehiro Imura*, Member

Magnetic resonant coupling is one of the conditions for electromagnetic induction using a circuit topology. On the other hand, the relation between the main magnetic flux and the near magnetic field has not been sufficiently discussed in the discussion of the circuit topology, even though the main magnetic flux is used for energy transfer in wireless power transfer. The full explanation of the contribution of the main magnetic flux was not proposed with regard to a comparison between the magnetic flux to circuit topologies is presented, and the mechanism of magnetic resonant coupling is proposed with regard to circuit theory and electromagnetism. The proposed theory is validated through an electromagnetic field analysis and experiment.

キーワード: ワイヤレス電力伝送,電磁誘導,磁界共振結合,磁束 **Keywords**: wireless power transfer, electromagnetic inductance, magnetic resonant coupling, magnetic field

1 はじめに

近年、磁界共振結合(磁界共鳴)方式によるワイヤレス 電力伝送(WPT: Wireless Power Transfer)に対する期待が高 まっている⁽¹⁾⁻⁽⁴⁾。この技術は、大きな伝送距離と位置ず れ⁽⁵⁾を許容でき、高効率の電力伝送を可能とする技術であ る。これまでに、音叉による説明、現象の解明⁽³⁾や、等価 回路化の提案^{(4),(6)~(8)}やバンドパス理論を用いた解釈^{(9), (10)} kQ積による解釈^{(11),(12)}、効率最大化の提案⁽¹³⁾動作 周波数の拡大⁽¹⁴⁾、中継コイル^{(15),(16)}、複数負荷への給電⁽¹⁷⁾ -⁽²²⁾など多くの発表がある。この技術は、様々な応用が期 待され、電気自動車へのワイヤレス給電^{(23),(24)}や走行中の 電気自動車へのワイヤレス給電⁽²⁵⁾、家庭内の家電へのワイ ヤレス給電⁽²⁶⁾等、様々な検討がされている。近年、磁界共 振結合方式は電磁誘導現象を利用したワイヤレス電力伝送 の一方式であり、共振条件を上手に利用した方式であるこ とが回路トポロジーの比較によって示された⁽²⁷⁾。

しかしながら、磁界結合タイプのワイヤレス電力伝送は 磁束で行われているので、本質的には磁束の振る舞いは無 視できない現象である。磁界共振結合方式に関しては、磁 束の振る舞いについての報告はあるが、どれもただ磁界分 布を示しただけであったり^{(2),(8),(29)}、力学モデルか らのアナロジーで説明したり⁽³⁰⁾、ポイティングベクトルで

*東京大学大学院 工学系研究科 〒277-8561 千葉県柏市柏の葉 5-1-5 Graduate School of Engineering, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561 の議論となっている⁽³¹⁾。いずれにせよ、回路トポロジーの 比較という観点での提示はされていないので磁束の強弱と 回路トポロジーとの関係が明確で無く、理解は深まってい ない。また、電磁界解析で得られた磁束分布を示すに留ま っているため、主磁束 ϕ_m と漏れ磁束が一様に扱われてしま っており、ワイヤレス電力伝送に寄与している磁束の正体 が不明瞭になっている^{(2),(8),(28)-(30)}。さらに、主磁束 ϕ_m の一部を構成し、かつ、誘導起電力を構成する磁束 ϕ_{21} の 役割への着目がなく、現象の理解は深まっていない。つま り、回路理論としての視点と電磁気学としての視点が乖離 しており、コイル近傍磁束の振る舞いと、磁界共振結合方 式との関係の説明が必要とされている。

このような現状において、これまで電流で考察されるこ となどが一般であった相互誘導回路をもとにしたワイヤレ ス電力伝送の4つの回路トポロジーについて、磁束は電流 に比例することから、磁束を用いた考察が有用であるとい える。そこで、本稿では、各々に大きな特徴を持つ4つの 回路トポロジーは、どの様な磁束の振る舞いになっている のか、そして、その様な磁束の振る舞いになる理由はどの 様に説明できるのかなどについて明らかにする。

2章では、磁界の結合による WPT の分類を示す。3章で は、磁束からみた回路トポロジーの比較を行なう。4章で、 実証実験を行う。5章で磁界共振結合方式における2つの共 振周波数における主磁束のふるまいについて検討する。6章 でまとめを述べる。

2 磁界の結合による WPT の分類

磁界の結合で電力伝送を行う場合の回路トポロジーの等 価回路をFig. 1に示す。ここでは、回路に入る向きに電流 I と L2を定義する。1次側の電流と2次側の電流によって磁束 を強め合う和動結合を想定するので、相互インダクタンス は正(+Lm)とする。磁界で結合し、ワイヤレス電力伝送を行 う場合、結合部分に関しては、電磁誘導の原理で電力伝送 が行われる。一方で、回路トポロジーを工夫し、共振現象 を送電側と受電側で生じさせることで、大きな伝送距離に おいても高効率かつ大電力で電力伝送できる磁界共振結合 方式がある。磁界共振結合方式は高効率かつ大電力を達成 でき、その他の回路トポロジーでは効率が低いもしくは電 力が小さいという違いから、両者は全く別の技術や現象と 思われていたが、結合の形態としては、電磁誘導の現象を 利用していることは同じであり、共振の生じさせ方の違い のみで違いが生じたことであることが報告されている (27)。 また、共振の起こし方によっては、送電側のみ直列に共振 コンデンサを入れ、1次側の自己インダクタンス L1を相殺 させるタイプ (S-N: Series-Non-resonant)⁽²⁷⁾ や、受電側のみ 共振コンデンサを入れ、2 次側の自己インダクタンス L2 を 相殺させる事により、2次側回路の入力力率を1にするタイ プ(N-S)⁽²⁷⁾などもある。結合係数 k が 0.1 程度になる大き な伝送距離において、各々の効率と電力は以下のようにな る。送電側のみに共振コンデンサを入れた S-N タイプの場 合、効率は低く、共振コンデンサが全くないタイプの N-N タイプと同じ値になるが、電力は大きくなる。N-N タイプ は効率も低く、電力も小さい。一方で、受電側に共振コン デンサを入れる N-S タイプは、効率は高く、磁界共振結合 方式のときの値と同じになるが、電力が小さい。送電側と 受電側に共振コンデンサを入れ、2次側回路の入力力率を1 にした上で、1次側回路の入力力率を1にする磁界共振結合 方式のみが高効率かつ大電力を実現できる (27)。

Fig. 1 Circuit topologies using magnetic coupling

3 磁束からみた WPT

本章では、ワイヤレス電力伝送での、コイルに発生する 電圧と磁束とインダクタンスの関係式を示す。全体の磁束 をFig.2に示す。ここでは、1 次側のコイルの巻かれている向 きと 1 次側の電流向きによって作り出される磁束 φ_{21} と、2 次側のコイルの巻かれている向きと 2 次側の電流が作り出 す磁束の向き φ_{12} が強め合う和動結合となっている。そのた め、Fig. 1で示した回路と同様に、相互インダクタンスは正 (+ L_m)となる。

コンデンサ以外は、どの回路トポロジーでも共通である。 この磁束を元に検討を行なう。

Fig.2. Main magnetic flux and leakage magnetic flux

鎖交磁束数は鎖交磁束とコイルの巻き数の積であるが、 ここでは、鎖交磁束数をφの記号で表す。厳密には、磁束 数と述べるべきところもあるが、以後、慣例に従い、磁束 数も磁束と述べる。磁束の振幅をΦとし、電源電圧との位 相差をθとし、式(1)で表す。iは11,12,21,22の4通りである。

$$\phi_i = \Phi_i \sin \theta_i \tag{1}$$

1次側に流れる電流で1次側に発生する磁束と電圧の関係 を式(2)に、2次側の電流で1次側に誘起する電圧、つまり、 電圧降下を式(3)に、2次側に流れる電流で発生する2次側の 磁束と電圧の関係を式(4)に、1次側の電流で2次側に誘起す る電圧と磁束の関係を式(5)に示す。主磁束 φ_m との関係を式 (6)に示す。一般に、主磁束 φ_m の内訳は示されないが、ここ では、起因する電流によって $\phi_{12} \ge \phi_{21} \ge$ に明確に分ける。 1次側の自己インダクタンス L_1 は漏れ磁束 $\varphi_{11} \ge$ 主磁束の 一部 ϕ_{21} で形成される。電流としては1次側の電流がかかわ っている。1次側に発生する電圧 V_{Lm1} は2次側の電流によ って形成され、相互インダクタンス L_m に比例する値で定義 される。この磁束は主磁束 φ_m の一部 φ_{12} によって生じる。

2次側の自己インダクタンスL2は漏れ磁束 φ22と主磁束の 一部 φ12で形成される。電流としては2次側の電流がかかわ っている。2次側に発生する電圧、誘導起電力 VLm2は1次 側の電流によって形成され、相互インダクタンス Lmに比例 する値で定義される。この磁束は主磁束 φmの一部 φ21 によ って生じる。つまり、2 次側の誘導起電力の元となる φ21 は ワイヤレス電力伝送にとっては重要なパラメータであるこ とがわかる。

$$v_{L11} = -\left(\frac{d\phi_{11}}{dt} + \frac{d\phi_{21}}{dt}\right) = L_1 \frac{di_1}{dt}$$
(2)

$$v_{Lm1} = -\frac{d\phi_{12}}{dt} = -\frac{d\phi_{12}}{di_2}\frac{di_2}{dt} = L_{12}\frac{di_2}{dt} = L_m\frac{di_2}{dt}$$
(3)

$$v_{L22} = -\left(\frac{d\phi_{22}}{dt} + \frac{d\phi_{12}}{dt}\right) = L_2 \frac{di_2}{dt}$$
(4)

$$v_{Lm2} = -\frac{d\phi_{21}}{dt} = -\frac{d\phi_{21}}{di_1}\frac{di_1}{dt} = L_{21}\frac{di_1}{dt} = L_m\frac{di_1}{dt}$$
(5)
$$\phi_m = \phi_{21} + \phi_{12}$$
(6)

よって、1 次側のコイルに生じる電圧 v_{L1} は式(2),式(3) より、式(7)となる。

$$v_{L1} = v_{L11} + v_{Lm1} = -\left(\frac{d\phi_{11}}{dt} + \frac{d\phi_{21}}{dt} + \frac{d\phi_{12}}{dt}\right) = L_1 \frac{di_1}{dt} + L_m \frac{di_2}{dt}$$
(7)

同様に、2 次側のコイルに生じる電圧 v_{L2} は式(4),式(5) より、式(8)となる。

$$v_{L2} = v_{L22} + v_{Lm2} = -\left(\frac{d\phi_{22}}{dt} + \frac{d\phi_{12}}{dt} + \frac{d\phi_{21}}{dt}\right) = L_2 \frac{di_2}{dt} + L_m \frac{di_1}{dt}$$
(8)

共振コンデンサがある場合、1 次側と2 次側の各々の自己 インダクタンス分を1 次側と2 次側の各々の共振コンデン サで相殺するために使われるので、1 次側は式(9)、2 次側は 式(10)となる。

$$v_{C1} = \frac{1}{j\omega C_1} I_1 = v_{L11}$$
(9)

$$v_{C2} = \frac{1}{j\omega C_2} I_2 = v_{L22} \tag{10}$$

このとき、各々、下記式(11)、式(12)を満たす。

$$\omega_{\rm l} = \frac{1}{\sqrt{L_{\rm l}C_{\rm l}}} \tag{11}$$

$$\omega_2 = \frac{1}{\sqrt{L_2 C_2}} \tag{12}$$

共振条件適応前の S-S 回路から考えると、 C_1 を無限大に した場合、1 次側にコンデンサはないことになり、つまり、 導通状態になり N-S に等しくなる。同様に、 C_2 を無限大に した場合、2 次側にコンデンサはないことになり、S-N にな る。 $C_1 \ge C_2$ 同時に無限大にすると、N-N になる。よって、 S-S の電流の式から考える⁽²⁷⁾。

$$I_{1} = \frac{r_{2} + R_{L} + j\left(\omega L_{2} - \frac{1}{\omega C_{2}}\right)}{\left\{r_{1} + j\left(\omega L_{1} - \frac{1}{\omega C_{1}}\right)\right\}\left\{r_{2} + R_{L} + j\left(\omega L_{2} - \frac{1}{\omega C_{2}}\right)\right\} + \omega^{2}L_{m}^{2}}$$
(13)

$$I_{2} = -\frac{j\omega L_{m}}{\left\{r_{1} + j\left(\omega L_{1} - \frac{1}{\omega C_{1}}\right)\right\}\left\{r_{2} + R_{L} + j\left(\omega L_{2} - \frac{1}{\omega C_{2}}\right)\right\} + \omega^{2}L_{m}^{2}}$$
(14)

また、*I*₁ と *I*₂の比率は式(15)で表される。電流比においては、1 次側の共振コンデンサ *C*₁ は関与しない。

$$\frac{I_1}{-I_2} = \frac{r_2 + R_L + j\left(\omega L_2 - \frac{1}{\omega C_2}\right)}{j\omega L_m}$$
(15)

これに、共振条件を適応すると、S-S での電流の式は式(16) と式(17)になる。

$$I_1 = \frac{r_2 + R_L}{r_1(r_2 + R_L) + \omega^2 L_m^2} V_1$$
(16)

$$I_{2} = -\frac{j\omega L_{m}}{r_{1}(r_{2} + R_{L}) + \omega^{2}L_{m}^{2}}V_{1}$$
(17)

同様に、S-N での電流の式は式(18)と式(19)に、N-S では、 式(20)と式(21)に、N-N では、式(22)と式(23)になる。

$$I_{1} = \frac{r_{2} + R_{L} + j\omega L_{2}}{r_{1}(r_{2} + R_{L} + j\omega L_{2}) + \omega^{2}L_{m}^{2}}V_{1}$$
(18)

$$I_{2} = -\frac{j\omega L_{m}}{r_{1}(r_{2} + R_{L} + j\omega L_{2}) + \omega^{2}L_{m}^{2}}V_{1}$$
(19)

$$I_{1} = \frac{r_{2} + R_{L}}{(r_{1} + j\omega L_{1})(r_{2} + R_{L}) + \omega^{2}L_{m}^{2}}V_{1}$$
(20)

$$I_{2} = -\frac{j\omega L_{m}}{(r_{1} + j\omega L_{1})(r_{2} + R_{L}) + \omega^{2}L_{m}^{2}}V_{1}$$
(21)

$$I_{1} = \frac{r_{2} + R_{L} + j\omega L_{2}}{(r_{1} + j\omega L_{1})(r_{2} + R_{L} + j\omega L_{2}) + \omega^{2} L_{m}^{2}} V_{1}$$
(22)

$$I_{2} = -\frac{j\omega L_{m}}{(r_{1} + j\omega L_{1})(r_{2} + R_{L} + j\omega L_{2}) + \omega^{2}L_{m}^{2}}V_{1}$$
(23)

1 次側電流と2 次側電流の比は、S-S と N-S は式(24)となり、 S-N と N-N は式(25)となる。

$$\frac{I_1}{-I_2} = \frac{r_2 + R_L}{j\omega L_m}$$
(24)

$$\frac{I_1}{-I_2} = \frac{r_2 + R_L + j\omega L_2}{j\omega L_m}$$
(25)

また、**Φ**=LIなので、式(2)~式(5)の関係より、各々の磁束 とインダクタンスと電流の関係は式(26)~式(29)となる。

$$\Phi_{11} + \Phi_{21} = L_1 I_1 \tag{26}$$

$$\Phi_{12} = L_m I_2 \tag{27}$$

$$\Phi_{22} + \Phi_{12} = L_2 I_2 \tag{28}$$

$$\Phi_{21} = L_m I_1 \tag{29}$$

よって、 Ф11 と Ф22 は式(30)と式(31)で求まる。

電学論●,●●巻●号,●●●年

$$\Phi_{11} = L_1 I_1 - L_m I_1 \tag{30}$$

 $\Phi_{22} = L_2 I_2 - L_m I_2$ (31)

以上より、各々の回路トポロジーにおける各コイルに生 じる磁束と電流と電圧の関係を計算するとTable 1のように まとめられる。この際、各回路トポロジーにおいて最大効 率となる最適負荷 R_{Lopt}を使用する。計算には、Table 2の Cal. の回路パラメータの値を使用した。Table 2は比較のため実 験で使用した値も記載する。

式(7)より、1 次側の磁束の増加は1 次側のコイルの電圧 VLI で確認でき、また、電流としては、1 次側の電流の増加 が支配的であり、2次側の電流の増加による寄与は Lm に比 例して加算される。式(8)より、2次側の磁束の増加は2次側 のコイルの電圧 VL2 で確認することができ、また、電流とし ては、2次側の電流の増加が支配的であり、1次側の電流の 増加による寄与はLmに比例して加算される。

これら事実に共振現象で生じる電流の増加を考慮すると、 以下のようになるはずである。

N-N は I1 も I2 もともに小さく、VL1 も VL2 も小さく、1 次側 と2次側のコイルに発生する磁界が小さい。また、式(25) に示した比を保持するので、1 次側の方が電流も磁束も大き くなる。1次側の電力が大きく、2次側の電力が小さく、効 率は低い。

S-N は *L* も *L* も大きくなり、*vL*1 も *vL*2 も大きくなり、1 次 側と2次側のコイルに発生する磁界が大きくなる。しかし、 式(25)に示した比を保持したままなので、N-Nと同様に1次 側の方が電流も磁束も大きくなる。それ故に、1次側の電力 が大きく、2次側の電力が小さく、効率は低いままである。

N-SはN-Nと比べると2次側での共振があるために、N-N の時に比べ2次側での電流が増える。N-Nの時に比べると、 Lの値が Inに対して大きくなり、VL2も VL1 に対して大きくな る。ただし、式(24)に示した比を保持し、最適負荷の時には、 I1≒I2なので⁽²⁷⁾、1 次側と 2 次側の電流がほぼ等しい状況 まで増えるという表現が正しい。vL2もvL1とほぼ等しくなる。 よって、2次側コイルの磁束も増え、1次側コイルの磁束と 同じくらいまでになる。効率は高いが、そもそも電流が1 次側も2次側もほとんど流れないので、受電電力は小さい。

S-SはN-Nと比べると、2次側と1次側の共振があり、1 次側に流れる電流も 2 次側に流れる電流も大きくなる。そ の比は、式(24)に示した比を保持し、N-Sと同様に、最適負 荷の時には、h≒bなので、1 次側と2 次側の電流がほぼ等 しい状況まで増える。v12もv11とほぼ等しくなる。よって、 2次側コイルの磁束も増え、1次側コイルの磁束と同じくら いまでになる。効率は高く、受電電力も大きい。

以上を踏まえ、磁束の分布についてまとめると、N-Nは1 次側の磁束が大きく、2次側の磁束はわずかとなる。また、 他トポロジーに比べ磁束自体の振幅も小さい。N-Sは1次側 と2次側の磁束が同じくらいになるが、他トポロジーに比 べ磁束自体の振幅は小さくなる。S-Nは1次側と2次側の磁 束はともに大きくなるが、1次側の方が大きくなり、他トポ ロジーに比べ磁束自体の振幅も大きくなる。S-Sは1次側と 2次側の磁束が同じくらいになり、他トポロジーに比べ磁束 自体の振幅も大きくなるはずである。これらのことは、Table 1の計算結果と一致する。

Table 1 N-N, S-N, N-S and S-S (a) N-N (b) S-N

N					. L	/	Re	Im	ABS	θ	
/	Re.	Im.	ABS	θ		$I_{1}[A]$	51.1	13.8	53.0	15.1	
<i>I</i> ₁ [A]	0.0	-1.0	1.0	271.0		I ₂ [A]	-1.8	-3.2	3.7	240.6	
I ₂ [A]	-0.1	0.0	0.1	136.6		V_{L11} [V]	-1377.5	5114.9	5297.2	105.1	
V_{L11} [V]	100.5	1.8	100.5	1.0		$V_{C1}[V]$	1377.5	-5114.9	5297.2	285.1	
$V_{r1}[V]$	0.0	-1.3	1.3	271.0		$V_{r1}[V]$	67.7	18.2	70.1	15.1	
V_{Lm1} [V]	-0.5	-0.5	0.7	226.6		$V_{Lm1}[V]$	32.3	-18.2	37.1	330.6	
V_{Lm2} [V]	10.0	0.2	10.0	1.0		V_{Lm2} [V]	-137.8	511.5	529.7	105.1	
V_{L22} [V]	-4.8	-5.1	7.0	226.6		V_{L22} [V]	323.3	-182.2	371.2	330.6	
$V_{r2}[V]$	-0.1	0.1	0.1	136.6		$V_{r2}[V]$	-2.4	-4.3	4.9	240.6	
$V_2[V]$	5.1	-4.9	7.1	316.6		$V_2[V]$	183.2	325.0	373.0	60.6	
Φ ₁₁ [uWb]	2.6	-143.9	143.9	271.0		ſ	١Ī	Φ_{11} [uWb]	7326.6	1973.2	7587.6
Φ ₂₁ [uWb]	0.3	-16.0	16.0	271.0		Φ21 [uWb]	814.1	219.2	843.1	15.1	
Φ 22 [uWb]	-7.3	6.9	10.1	136.6		Φ 22 [uWb]	-261.0	-463.1	531.6	240.6	
Φ_{12} [uWb]	-0.8	0.8	1.1	136.6		Φ12 [uWb]	-29.0	-51.5	59.1	240.6	
Φ_m [uWb]	-0.5	-15.2	15.2	268.0		Φ_m [uWb]	785.1	167.8	802.8	12.1	
$P_1[W]$	1.8	100.5	100.5	89.0		$P_{1}[W]$	5114.9	1377.5	5297.2	15.1	
$P_2[W]$	0.5	η [%]	27.1		P 2 [W]	1384.5	η [%]		27.1	
$P_{r1}[W]$	1.3	R Lop	, [Ω]	100.5		$P_{r1}[W]$	3712.1	$R_{Lopt} [\Omega]$		100.5	
$P_{r2}[W]$	0.0					$P_{r2}[W]$	18.2				

 $I_{1}[A]$

 $I_2[A]$

 V_{L11} [V]

 V_{r1} [V

 V_{Lm1} [V]

 $V_{Im2}[V]$

 V_{L22} [V]

 $V_{C2}[V]$ $V_{r2}[V]$

 $V_2[V]$

Φ 11 [uWb

Φ 21 [uWb]

Φ 22 [uWb]

Φ 12 [uWb

 Φ_m [uWb]

 $P_1[W]$

 $P_2[W]$

 $P_{r1}[W]$

P ... [W]

0.9 99.0

0.1 0.9

9.9

8.8

-8.8

-1.1

8.8

14.3

1.6 -124.3

-13.8

-12.2

10.0

13

99.0

(c	:) N-S		(0	(d) S-S						
			/	Re	Im	ABS	θ			
Im	ABS	θ	I1[A]	9.9	0.0	9.9	0.0			
-1.0	1.0	275.8	I ₂ [A]	0.0	-8.7	8.7	270.0			
-0.1	0.9	185.8	V_{L11} [V]	0.0	991.4	991.4	90.0			
10.0	99.5	5.8	$V_{C1}[V]$	0.0	-991.4	991.4	270.0			
-1.3	1.3	275.8	$V_{r1}[V]$	13.1	0.0	13.1	0.0			
-8.7	8.7	275.8	V_{Lm1} [V]	86.9	0.0	86.9	0.0			
1.0	9.9	5.8	V _{Lm2} [V]	0.0	99.1	99.1	90.0			
-86.8	87.2	275.8	V_{L22} [V]	868.8	0.0	868.8	0.0			
86.8	87.2	95.8	$V_{C2}[V]$	-868.8	0.0	868.8	180.0			
-0.1	1.2	185.8	$V_{r2}[V]$	0.0	-11.5	11.5	270.0			
0.9	8.8	5.8	$V_2[V]$	0.0	87.6	87.6	90.0			
-141.8	142.5	275.8	Φ ₁₁ [uWb]	1420.0	0.0	1420.0	0.0			
-15.8	15.8	275.8	Φ ₂₁ [uWb]	157.8	0.0	157.8	0.0			
-12.5	124.9	185.8	Φ 22 [uWb]	0.0	-1244.5	1244.5	270.0			
-1.4	13.9	185.8	Φ ₁₂ [uWb]	0.0	-138.3	138.3	270.0			
-17.1	21.1	234.5	Φ_m [uWb]	157.8	-138.3	209.8	318.8			

 $P_1[W]$

 $P_2[W]$

 P_{r1} [W]

 $P \rightarrow [W]$

991.4

761.

130.0

99.9

991.4

. [Ω]

0.0

0.0

76.9

10.1

Table 2 Circuit parameters

84.2

76.8

10.1

/	Cal.	Exp.	/	Cal.	Exp.
f [kHz]	100.0	100.0	C_1 [nF]	15.9	15.9
L_1 [uH]	159.2	158.7	C ₂ [nF]	15.9	15.9
L 2 [uH]	159.2	159.2	$r_1[\Omega]$	1.3	1.4
L_m [uH]	15.9	15.9	$r_2[\Omega]$	1.3	1.3
k [-]	0.10	0.10	Q1[-]	75.6	72.6
			$Q_{2}[-]$	75.6	78.7

4 電磁界解析と実験による検証

前章までは理論計算を示したが、妥当性を検証するため に、実験をもって検証を行う。ただし、3次元的に存在する 高周波の磁束を直接観測することは困難である。そこで、 磁束分布に関しては、電磁界解析ソフトで示し、実験にお いては、観測できる値である I.L から磁束の検証を行う。

回路パラメータはTable 2の通りである。コイルの寸法を Table 3に示す。a は導線の太さ、s は導線間の距離である。 Fig. 3に送受電コイル写真と実験構成を示す。実測より伝送 距離 g = 16.2 cm の時に結合係数 k = 0.10 となる。k = 1 に比 ベ 1/10 の値を設定することで、大きな伝送距離の時の特性 を確認する事を目的とする。測定はベクトルネットワーク アナライザ (VNA: Vector Network Analyzer) E5061B で行い、 はじめに各素子を測定し、別途、電力伝送効率等は S パラ メータで測定する。そして、Sパラメータから Zパラメータ 変換を行なって任意の負荷を接続した時の効率を算出する ⁽³²⁾。本稿では、この様にして得られた値を実験値とする。 本稿では、電力伝送効率はnで表し、式(32)で表される。 P_1 , P_{r1} , P_2 は各々、式(33)~(36)で表される。 r_1 , r_2 , R_L は 各々、1 次側内部抵抗、2 次側内部抵抗、負荷抵抗である。 内部抵抗には放射抵抗も含まれている。大電力になるか否 かの判断をするに当たって、全ての回路方式において等し い入力電圧 V_1 =100V を印加した条件で比較する。

$n = \frac{P_2}{P_2} =$	P	(32)
$P_{1}^{\prime \prime} = P_{1}^{\prime \prime}$	$P_{r1} + P_{r2} + P_2$	(32)

$P_1 = \operatorname{Re}\left\{I_1 V_1\right\}$	(33)
$P_{r1} = \operatorname{Re}\left\{I_{1}\overline{I}_{1}r_{1}\right\}$	(34)

$P_{r^2} = \operatorname{Re}\left\{I_2\bar{I}_2r_2\right\}$	(35)
$P_2 = \operatorname{Re}\left\{I_2 \overline{I}_2 R_L\right\}$	(36)

Table 3 Coil parameters

Outer radius [mm]	300
Inner radius [mm]	100
turns	27.5
<i>a</i> [mm]	2
s [mm]	2

Fig. 3. Transmitting and receiving coils and experimental setup

実験において得られた電流とそこから得られた磁束について、Table 4にまとめて示す。計算値と実験値では多少の 誤差は確認できるが、ほぼ一致しており、前章で述べたこ とが実験を通しても得ることができた。更に、電磁界解析 で得られた磁束をFig.4に示す。最大の磁束の強さは N-N で は 8.3[A/m]、S-N では 844.5[A/m]、N-S では 8.2[A/m]、S-S では 96.6[A/m]であり、各々その値で最大値を規格化されて いる。Fig.4からも、磁束密度の強弱がこれまで述べてきた 通りであることがわかる。

つまり、N-N と S-N の時は 1 次側の磁束が大きい。但し、 N-N は磁束が小さく、S-N は磁束が大きい。そして、N-S と S-S の時は、最適負荷の時には、 $I_1 = I_2$ という特徴を持つの で⁽²⁷⁾、1次側と2次側の磁束がほぼ等しくなる。但し、N-S は磁束が小さく、S-Sは磁束が大きい。

Table 4N-N, S-N, N-S and S-S(a) N-N(b) S-N

	Cal.		Exp.			С	al.	Exp.	
	ABS	θ	ABS	θ		ABS	θ	ABS	θ
I1 [A]	1.0	271.0	1.0	271.0	I ₁ [A]	53.0	15.1	53.0	346.6
I2 [A]	0.1	136.6	0.1	136.4	I ₂ [A]	3.7	240.6	3.7	209.3
Φ11 [uWb]	143.9	271.0	143.8	271.0	Φ11 [uWb]	7587.6	15.1	6204.1	346.6
Φ_{21} [uWb]	16.0	271.0	16.0	271.0	Φ_{21} [uWb]	843.1	15.1	689.9	346.6
Φ_{22} [uWb]	10.1	136.6	14.2	136.4	₽ 22 [uWb]	531.6	240.6	508.0	209.3
Φ_{12} [uWb]	1.1	136.6	1.6	136.4	𝒵 12 [uWb]	59.1	240.6	56.3	209.3
Φ_m [uWb]	15.2	268.0	14.9	266.7	Φ_m [uWb]	802.8	12.1	649.7	343.3
η [%]	27.1	/	27.6	/	η [%]	27.1		25.8	

(c) N-S

(d) S-S

	C	Cal.		Exp.		Exp.			C	al.	
	ABS	θ	ABS	θ			ABS	θ	AB		
$I_{1}[A]$	1.0	275.8	1.0	275.7		I1 [A]	9.9	0.0			
I2 [A]	0.9	185.8	0.9	187.8		I ₂ [A]	8.7	270.0			
Φ11 [uWb]	142.5	275.8	141.8	275.7		Φ11 [uWb]	1420.0	0.0	141		
Φ ₂₁ [uWb]	15.8	275.8	15.8	275.7		Φ_{21} [uWb]	157.8	0.0	15		
Φ22 [uWb]	124.9	185.8	125.7	187.8		Φ22 [uWb]	1244.5	270.0	124		
Φ12 [uWb]	13.9	185.8	13.9	187.8		Φ_{12} [uWb]	138.3	270.0	13		
Φ_m [uWb]	21.1	234.5	21.4	235.2		Φ_m [uWb]	209.8	318.8	21		
η [%]	76.8	/	77.6	/		η [%]	76.8	/	7		

(c) N-S (d) S-S

Fig.4. Magnetic flux

5 2つのピーク周波数における主磁束

前章までは、各回路トポロジーにおいて生じる磁界分布 が、なぜその様になるのかについて検証を行ったが、本章 では、磁界共振結合方式を用いて、電力伝送で重要な磁束 について検証する。一般に、磁束の結合は主磁束 Φ_mが行っ ているとされているが、ワイヤレス電力伝送において重要 なのは、主磁束の一部であり、かつ、誘導起電力の元とな る磁束 ϕ_{21} である。この磁束は1次側の電流を流すことによって生じる。当然ながら2次側の負荷に電流が流れ、つまり、電力が送られると ϕ_{12} によって、1次側の電圧降下が生じるため、 ϕ_{12} も同時に確認する。

そこで、本章では、ワイヤレス電力伝送においては、主磁束 ϕ_m ではなく、主磁束の一部であり、かつ、誘導起電力の元となる磁束 ϕ_{21} に着目することの重要性について、特徴的な 2 つの周波数に着目することでより明瞭に示すことを行う。

磁界共振結合方式においては、結合が強い領域では、コ イル単体の共振周波数 foを中心に両側に 2 つの電力ピーク の周波数 $f_m \ge f_e$ ($f_m \le f_e$) が存在する⁽⁶⁾。各々のピーク周波 数において、磁気壁と電気壁を生じ、各々偶モード(Even mode)、奇モード(Odd mode)と呼ばれる。また、単体の共 振周波数より低い周波数では電流が同位相に近づいていき、 高い周波数では電流が逆位相に近づいていく(Fig.5)。この 時の磁束分布は低いピーク周波数 fm に関しては、電流が同 位相に近いので、磁束が中央にあつまり対称面に対し垂直 に磁束が向く磁気壁に近い状態となり、高いピーク周波数 feにおいては、磁束が端にあつまり対称面に対して水平に磁 束が向く電気壁に近い状態となる(Fig.6)。一見、fmでは主 磁束が存在するが、fe では磁束が存在しないように見える。 そのため、feでは電力伝送ができないようにみえるが、近傍 磁束分布はほぼ漏れ磁束 ϕ_{11} と ϕ_{22} が支配的であり、主磁束 Φmの占める割合はFig.7(a)に示すように小さく、確認が困難 であるだけのことであることがわかる。また、その主磁束 Φm も fm の時のほうが大きく、fe の時は小さいが、Fig.5からわ かるように、効率や電力に関して、主磁束に比例して影響 を及ぼしておらず、むしろ Ф12と Ф21 や Ф11と Ф22 に比例し て電力などに影響を与えていることがわかる。つまり、主 磁束は、 ϕ_{12} と ϕ_{21} の位相が一致しているか否かの違いを読 み取ることとしては使えるが、**Φ**12と**Φ**21の合算となったあ とではそれ自体は重要な意味を電力伝送などに対しては持 たない。これらのことは、式(6)、式(27)、式(29)からもいえ る。つまり、電力伝送に重要なパラメータは、主磁束 Φmを 構成している Φ_{12} と Φ_{21} であるといえる。 Φ_{12} の役割がわか る極端な例としては、負荷 RL が繋がっていない場合、I2=0 なので、式(27)より、 ϕ_{12} は0となる。Lが流れ始めると、 ϕ_{12} が発生し、電力伝送が行なわれたことになる。その中でも 特に、式(5)で示したように、2次側に誘導起電力を生じさせ ている Φ21 が重要といえる。これは、2 次側に生じた誘導起 電力が2次側の電源となり、2次側に電力を供給する源にな るからである。

6 まとめ

磁界共振結合方式においては、回路トポロジーによ る説明により、電磁誘導現象を利用し、かつ、共振条 件として、1次側と2次側各々で共振を生じさせるとい う条件に絞った回路トポロジーが磁界共振結合方式に 相当することが報告された⁽²⁷⁾。一方で、ワイヤレス電 力伝送の現象としては磁束がエネルギーの伝送に使わ れているのにもかかわらず、回路トポロジーの議論に おいては、近傍磁界との関連がしっかりと示されてこ なかった。つまり、従来の回路トポロジーと磁界共振 結合方式における回路トポロジーとの比較において、 磁界共振結合方式における磁束が他のトポロジーと比 べ、どのように振る舞いワイヤレス電力伝送に寄与し ているのかの十分な説明がされてこなかった。そこで、 本稿では、磁束の振る舞いから回路トポロジーまでを 一連の流れとして説明し、回路理論と電磁気学両面か ら磁界共振結合方式を含む回路トポロジーにおける磁 束との関係を示した。さらに、主磁束*Φ*mではなく、主 磁束を形成している2つの磁束 Φ_{21} と Φ_{12} の重要性につ いて述べた。特に、2次側の誘導起電力の元となる磁束 **Φ**21の重要性について述べた。これらについて、電磁界 解析と実証実験を用いて、理論計算の妥当性を証明し た。これにより、磁束という電磁気学からの視点でも、 直感的に磁界共振結合方式を含む4つの回路トポロジ ーの現象に関して理解を深めることが出来る。本報告 が今後のワイヤレス電力伝送にとって有用な知見とな れば幸いである。

辞

謝

本研究の一部は JSPS 科研費 25709020 の助成を受けたも のです。

Ϋ́ 献

- André Kurs, Aristeidis Karalis, Robert Moffatt, J. D. Joannopoulos, Peter Fisher, (1)Marin Soljačić, "Wireless Power Transfer via Strongly Coupled Magnetic Resonances," in Science Express on 7 June 2007, Vol. 317. no. 5834, pp. 83 – 86
- (2)Aristeidis Karalis, J.D. Joannopoulos and Marin Soljačić, "Efficient wireless non-radiative mid-range energy transfer," Annals of Physics, Volume 323, Issue
- 1, January 2008, Pages 34-48, January Special Issue 2008. Qiang Chen, Long Li, Kunio Sawaya, "Numerical Analysis on Transmission Efficiency of Evanescent Resonant Coupling Wireless Power Transfer System," (3)IEEE Trans. Antennas Propag., vol. 58, no. 5, pp. 1751-1758, May 2010.
- Takehiro Imura, Yoichi Hori, "Wireless power transfer using electromagnetic resonant coupling", The Journal of the Institute of Electrical Engineers of Japan, (4)Vol. 129, No. 7, pp.414-417 (2009) 居村岳広,堀洋一,"電磁界共振結合による伝送技術",電気学会誌, Vol.
- 129, No. 7, pp.414-417 (2009). Takehiro Imura, Hiroyuki Okabe, Toshiyuki Uchida, Yoichi Hori, "Wireless (5)
- Power Transfer during Displacement Using Electromagnetic Coupling in Resonance : Magnetic- versus Electric-Type Antennas", The Transactions of the Institute of Electrical Engineers of Japan, Vol. 130, No. 1, pp.76-83 (2010). 居村岳広、岡部浩之、内田利之、堀洋一、"共振時の電磁界結合を利用した 位置ずれに強いワイヤレス電力伝送",電学論D, Vol. 130, No. 1, pp.76-83, 2010.
- (6) 居村岳広,内田利之,堀洋一:「近傍界用磁界アンテナの共振を利用した 高効率電力伝送の解析と実験-基本特性と位置ずれ特性-」,平20年度 電気学会産業応用部門大会, Vol. II, 2-62, pp.539-542 (2008.8) Takehiro Imura, Toshiyuki Uchida, Yoichi Hori, "Experimental Analysis of High Efficiency Power Transfer using Resonance of Magnetic Antennas for the Near Field- Geometry and Fundamental Characteristics -", IEE of Japan Industry Applications Society Conference, Vol. II, 2-62, pp.539-542 (2008.8) 平山裕,小澤俊之,平岩洋介,菊間信良, and 榊原久二男, "無線電力伝送 の共鳴モードと等価回路表現",電子情報通信学会技術研究報告. A・P, ア (7)
- ·テナ・伝播, vol. 109, no. 183, pp. 35-40, Aug. 2009. Hirayama Hiroshi, Ozawa Toshiyuki, Hiraiwa Yosuke, Kikuma Nobuyoshi, Sakakibara Kunio, "On a resonant mode and equivalent circuit of wireless power transmission", IEICE Technical Report AP2009-85, vol. 109, no. 183, pp. 35-40, Aug. 2009(2009-09) (8)
- Takehiro Imura, Hiroyuki Okabe, Toshiyuki Uchida, Yoichi Hori, "Study of Magnetic and Electric Coupling for Contactless Power Transfer Using Equivalent Circuits : —Wireless Power Transfer via Electromagnetic Coupling at Resonance-", The Transactions of the Institute of Electrical Engineers of at Resonance—, The Transactions of the Japan, Vol. 130-D, No. 1, pp.84-92 (2010) 居村岳広, 岡部浩之, 内田利之, 堀洋一

,"等価回路から見た非接触電力伝 送の磁界結合と電界結合に関する研究",電学論D, Vol.130, No.1, pp.84-92, 2010

- 粟井 郁雄, "共鳴型ワイヤレス電力伝送の新しい理論", 電学論C, Vol. (9)المعن المربق ا مربق المربق المربق المربق المربق المربق المربق المربق المربق المربق المربق
- transactions of the Institute of Electrical Engineers of Japan. C, A publication of Electronics, Information and System Society 130(6), 966-971, 2010-06-01 粟井 郁雄, "磁気結合共振器型ワイヤレス給電システムの BPF 理論によ (10)る設計法,"電気学会論文誌. C, Vol. 130, No. 12, pp. 2192-2197, 2010. I. Awai, "BPF Theory-Based Design Method for Wireless Power Transfer System by Use of Magnetically Coupled Resonators," IEEJ Trans. Electron. Inf. Syst., vol. 130, no. 12, pp. 2192–2197, Dec. 2010.
- 5 A., No. 15, Mart, pp. 202 217, No. 2007 日本 伝広、"電磁界共振結合", パワーエレクトロニクスハンドブック, 1 編 11 章 5.2 節, pp.195-198, オーム社, 2010.7 (11)
 - Takehiro Imura, "Electromagnetic Resonant Coupling", Power Electronics Handbook, pp.195-198, Ohmsha, Ltd., 2010.7 遠井 敬大, 金子 裕良, 阿部 茂: "非接触給電の最大効率の結合係数 k と
- (12)コイルの Q による表現", 電気学会論文誌, Vol. 132, No. 1, pp.123-124 (2012.1.1)Tohi Takahiro, Yasuyoshi Kaneko, Shigeru Abe, "Maximum Efficiency of Contactless Power Transfer Systems using k and Q", The transactions of the Institute of Electrical Engineers of Japan. D, A publication of Industry Applications Society 132(1), 123-124, 2012-01-01
- (13) Takehiro Imura, Yoichi Hori, "Determination of limits on air gap and efficiency for wireless power transfer via magnetic resonant coupling by using equivalent circuit", The Transactions of the Institute of Electrical Engineers of Japan, Vol. 130-D, No. 10, pp.1169-1174 (2010)

居村岳広,堀洋一,"等価回路から見た磁界共振結合におけるワイヤレス 電力伝送距離と効率の限界値に関する研究",電学論D, Vol. 130, No. 10, pp.1169-1174 (2010)

- (14)Takehiro Imura, Hirovuki Okabe, Yoichi Hori, "Proposal of Wireless Power Transfer via Magnetic Resonant Coupling in kHz-MHz-GHz", Proceedings of the 2010 IEICE General Conference, BS-9-5 (2010.3) 居村岳広,岡部浩之,堀洋一, "kHz~MHz~GHz における磁界共振結合 によるワイヤレス電力伝送用アンテナの提案",電子情報通信学会総合大
- 会講演論文集, S-24-S25, BS-9-5 (2010.3) (15)Takehiro Imura, "Equivalent Circuits of Repeater Antennas for Wireless Power Transfer via Magnetic Resonant Coupling", The Transactions of the Institute of Electrical Engineers of Japan, Vol. 131, No. 12, pp.1373-1382 (2011) "磁界共振結合のワイヤレス電力伝送における中継アンテナ 居村 岳広, の等価回路化", 電学論D, Vol. 131, No. 12, pp.1373-1382 (2011)
- (16)Shimada, A.; Ito, Y.; Uehara, H.; Ohira, T., "Effect of hop counts on power division ratio in multi-hop power transfer via magnetic resonance," Wireless Power Transfer (WPT), 2013 IEEE , pp.179,182, 15-16 May 2013
- Benjamin L. Cannon, James F. Hoburg, Daniel D. Stancil, and Seth Copen (17)Benjamin L. Cannon, James F. Hooug, Danier D. Stanch, and Sein Copen Goldstein, Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers, IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 7, 1819-1825, JULY 2009. 安倍 秀明,秋山 稔博,尾崎 保,辻本 豊彦,小原 弘士,小笠原 潔, "複数の 2
- (18)次コイルで受電する機器のワイヤレス給電に適用可能な等価回路",電子 情報通信学会ソサイエティ大会講演論文集, B-1-50, No.1, p.50, 2012. Hideaki Abe, Akiyama Toshihiro, Ozaki Mamor, Tsujimoto Toyohiko, Kohara Hiroshi, Ogasawara Kiyoshi, "Equivalent Circuit Applicable to Free Positioning Wireless Power Transmission of Apparatus Having Plural Secondary Coils", Proceedings of the 2012 IEICE Society Conference, B-1-50, No.1, p.50, 2012.
- Takehiro Imura, Yoichi Hori, "Optimization using Transmitting Circuit of Multiple Receiving Antennas for Wireless Power Transfer via Magnetic Resonance Coupling", 4p, INTELEC.2011.10.10. Casanova, J.J.; Zhen Ning Low; Jenshan Lin, "A Loosely Coupled Planar Wireless Power System for Multiple Receivers," Industrial Electronics, IEEE (19)
- (20)Transactions on , vol.56, no.8, pp.3060-3068, Aug. 2009 Awai, I.; Yamaguchi, K.; Ishida, T.; Ishizaki, T., "Design of a resonator-coupled
- (21)WPT system with multiple loads based on measurement with a VNA instead of an oscilloscope," Microwave Conference Proceedings (APMC), 2012 Asia-Pacific ,pp.824,826, 4-7 Dec. 2012
- Koh Kim Ean, Beh Teck Chuan, Takehiro Imura and Yoichi Hori, Multi-receiver (22)and Repeaters Wireless Power Transfer via Magnetic Resonance Coupling Impedance Matching and Power Division Utilizing Impedance Inverter -, The International Conference on Electrical Machines and 15th Systems (ICEMS2012), 2012.
- (23)Yukio Yokoi, Akihiko Taniya, Masaki Horiuchi, Shigeru Kobayashi, "Development of kWClass Wireless Power Transmission System for EV Using Magnetic Resonant Method", 1st International Electric Vehicle Technology Conference 2011. 5
- 居村岳広,加藤昌樹,堀洋一: "磁界共鳴による EV 用ワイヤレス給電技術", (24)まぐね, vol.9, no. 3,pp.105-110, 2014.6 Takehiro Imura, Masaki Kato, Yoichi Hori,"Wireless Power Transfer for Electric
- Vehicle via Magnetic Resonant Coupling", Magnetics Japan, vol.9, no. 3, pp.105-110, 2014.6 加藤昌樹、居村岳広、堀洋一、"走行中ワイヤレス給電用アンテナに関す
- (25)る受電位置と効率に関する検討", 平成 24 年電気学会産業応用部門大会, Vol. II, pp.219-222, 2012.8.23 Masaki Kato, Takehiro Imura, Yoichi Hori, "Study about Relation of Efficiency between Receiving Antenna Position and Efficiency for Wireless Power Transfer for Moving Vehicle with Relay Antenna", IEE of Japan Industry Applications Society Conference, pp. 219-222, 2012
- 庄木裕樹、"ワイヤレス電力伝送の技術動向・課題と実用化に向けた取り (26)組み",信学技報,WPT2010-07, July (2010). Hiroki Shoki, "Trends of Wireless Power Transmission Technologies and Approaches for Commercialization", IEICE Technical Report, WPT2010-07,

July (2010).

- (27) 居村 岳広,堀洋一,"電磁誘導方式と磁界共振結合方式の統一理論", 電気学会論文誌 D, Vol. 135, No.6, pp.697-710, 2015.6.1 Takehiro Imura, Yoichi Hori, "Unified Theory of Electromagnetic Induction and Magnetic Resonant Coupling", The Transactions of the Institute of Electrical Engineers of Japan, Vol. 135-D, No. 6, pp.697-710, 2015.
 (20) 内容系列 Vol. 135-D, No. 6, pp.697-710, 2015.
- (28) 安倍秀明,小笠原潔,西村太,太田智浩,北村浩康,鈴木真美,"共振を 使う磁気結合ワイヤレス給電技術の効率について,"信学技報, WPT2011-21, Dec. 2011 Hideaki Abe, Kiyoshi Ogasawara, Futoshi Nishimura, Tomohiro Ota, Hiroyasu Kitamura, Mami Suzuki,"Efficiency of Wireless Energy Transfer System Using Resonance", IEICE Technical Report, WPT2011-21, Dec. 2011.
 (29) 平山裕,矢満田博之,菊間信良,榊原久二男,"電磁界の観点から見た結
- (29) 平山裕,矢満田博之,菊間信良,榊原久二男,"電磁界の観点から見た結 合共振型無線電力伝送",信学技報,WPT2013-17, July, 2013 Hiroshi Hirayama, Hiroyuki Yamada, Nobuyoshi Kikuma, Kunio Sakakibara, "Coupled-resonant wireless power transfer technology from the viewpoint of electro-magnetic field", WPT2013-17, July, 2013
- (30) 山口大輝,石飛 学,"力学的モデルを用いた磁気共鳴型非接触給電のエネルギー伝送解析",電気学会研究会資料.SPC,半導体電力変換研究会2012(96),21-26,2012-07-30.
 Daiki Yamaguchi, Manabu Ishitobi, "Analysis of Contactless Power Transmission by Using Dynamic Model", The papers of Technical Meeting on
- Semiconductor Power Converter, IEE Japan, 2012(96), 21-26, 2012-07-30.
 (31) 細谷達也, "電磁界共鳴フィールドを用いた直流共鳴方式 ZVS ワイヤレス給電システムと 10MHz 級実験", 電気情報通信学会, 無線電力伝送時限研究専門委員会研究会, WPT2013-07, 2013.7.
 Tatsuya Hosotani, "A Novel Direct-Current-Resonance ZVS Wireless Power Transfer System with an Electromagnetic Resonance Field and a 10MHz-Class Experiment", IEICE Technical Report, WPT2013-07, July (2013).
- (32) http://www.home.agilent.com/

(正員) 1980年8月11日生。2005年3月上智 大学理工学部電気電子工学科卒業。2007年3 月東京大学大学院工学系研究科電子工学専攻 修士課程修了。2010年3月同大学大学院工学 系研究科電気工学専攻博士後期課程卒業。同年 4月同大学大学院新領域創成科学研究科客員共 同研究員。同年9月より同大学大学院新領域創 成科学研究科助教。2015年9月同大学大学院 工学系研究科電気系工学専攻特任講師。2015

年電気学会産業応用部門論文賞などを受賞。現在,電磁界共振結合, 電磁共鳴を用いた電気自動車や電気機器へのワイヤレス電力伝送 の研究に従事。電気学会,電子情報通信学会,自動車技術会,IEEE 各会員。