論 文

HDDベンチマーク問題における位相安定化補償器及び ゲイン安定化補償器のGKYP 設計法

学生員 兼松 正人*a) 上級会員 藤本 博志*

Generalized KYP Synthesis on the Phase Stabilization and Gain Stabilization Compensators for the HDD Benchmark Problem

Masato Kanematsu^{*a)}, Student Member, Hiroshi Fujimoto^{*}, Senior Member

Feedback controllers are used to suppress disturbances and modelling error. In particular, position control error depends on feedback control performance. Therefore, extensive research has been devoted to the development of feedback control design. However, mechanical systems have many resonant modes, which disturb system stability and limit feedback control performance. Generally, notch filters are used to suppress resonant modes at the expense of phase delay, which also restricts bandwidth. In this paper, a method for the simultaneous design of a feedback controller and phase stabilization and gain stabilization compensators using the generalized KYP lemma is proposed. The generalized KYP lemma enables feedback control performance to be optimized while considering system stability. First, the structures of the feedback controllers and stabilization compensators are defined. Various control performances are formulated using frequency domain inequalities. Using the generalized KYP lemma, the feedback controller is optimized while considering various types of control performance. The effectiveness of the proposed design method is verified in application examples on the HDD benchmark problem.

キーワード:HDD ベンチマーク問題、GKYP 補題、ゲイン安定化補償器、位相安定化補償器 Keywords: HDD Benchmark Problem, Generalized KYP Lemma, Gain Stabilization Compensator, Phase Stabilization Compensator

1. 序 論

ハードディスク装置(Hard Disk Drive: HDD)や半導体 露光装置などの精密位置決め機器の高性能化への要求は高 く、様々な研究を通して高速・高精度化が行われている。高 精度な位置決めを実現するためには外乱を補償するための フィードバック制御器の広帯域化が必要となり、精力的な 研究が進められている⁽¹⁾⁽²⁾⁽³⁾。

精密位置決めのフィードバック制御器に求められる性能 は、機構系が持つ共振モードの安定化及び制御帯域の広帯 域化である。HDDの精密位置決めでは、モード影響定数が 負である共振モードはむだ時間や離散化時の遅れによりナ イキスト線図上にて点 [-1,0*j*] から遠ざかる方向に円を描 くため、位相安定化しやすい。一方、モード影響定数が正 である共振モードはナイキスト線図上にて点 [-1,0j] に向 かって円を描くため位相安定化が難しい。そのため従来手 法ではモード影響定数が正である共振モードを予めノッチ フィルタによりゲイン安定化し、剛体モードを含むその他 の共振モードに対して、位相安定化補償器が別々に設計さ れていた"。しかしながら剛体モードを位相安定化するた めに位相進み補償を行うと、高周波域でのゲインを増大さ せるためモード影響定数が負である共振モードが不安定に なりやすく、モード影響定数が正の共振モードを位相安定 化するために位相遅れ補償を行うと、制御帯域での位相遅 れが増大し、広帯域化を阻害する。このように HDD の精 密位置決めでは、位相進み補償特性及びノッチフィルタ特 性を各周波数領域に作用させることで広帯域化が可能な制 御対象であるが、各共振モードに対する安定化補償器は互 いに影響しあっているため、同時最適化を行うことで更な る広帯域化が可能となる。

近年、制御理論の分野にて一般化 KYP 補題 (Generalized KYP lemma : GKYP lemma) と呼ばれる定理を用いた制御 器設計法が提案されており⁽⁵⁾⁽⁶⁾、産業機器への適用例も報

a) Correspondence to: kanematsu@hflab.k.u-tokyo.ac.jp

^{*} 東京大学大学院 新領域創成科学研究科 〒 277-8561 千葉県柏 市柏の葉 5-1-5

Department of Frontier Science, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, Japan 277-8561

ω_1 [rad/s]	0	<i>к</i> 1	1.0	ζ_1	0
ω_2 [rad/s]	$3950\times 2\pi$	<i>к</i> ₂	-1.0	ζ_2	0.035
ω_3 [rad/s]	$5400 \times 2\pi$	Кз	0.4	ζ3	0.015
ω_4 [rad/s]	$6100 \times 2\pi$	<i>к</i> 4	-1.2	ζ4	0.015
ω_5 [rad/s]	$7100 \times 2\pi$	К5	0.9	ζ5	0.060
K_p	3.7×10^{7}				

Table 1. Plant Parameters of HDD Benchmark Problem

告されている^の。本稿では GKYP 補題を用いた位相安定化 補償器とゲイン安定化補償器の同時設計手法を提案する。 本稿の新規性は従来、位相安定化補償器とゲイン安定化補 償器の同時最適化問題という従来取り組まれてこなかった 問題を GKYP 補題を用いて行った点にある。更に、従来の GKYP 補題では低周波数域の開ループ特性に関する仕様を ナイキスト線図上のある直線により定まる半平面を用いて 与えていた。しかしながら、適切な半平面を決定すること は HDD 位置決め制御などの複雑な制御対象においては難 しい。そこでまず、極配置手法を用いて低周波数域の開ルー プ特性の仕様を設計した。次に、各共振モードをゲイン及 び位相安定化するための制御器構造を定義し、所望の性能 仕様(クロスオーバ周波数、位相余裕、ゲイン余裕など)を 表現する周波数領域不等式を定義する。最後に GKYP 補 題を用いて各共振モードに対して適切な安定化を行いなが ら制御帯域を最大化するような制御器パラメータを自動設 計する。GKYP 設計法では数理最適化に基づき制御器パラ メータを自動設計するため、もし解が見つからなかった場 合は設計者が設定した性能仕様を満たすような制御器のパ ラメータが存在しない。そのため、達成可能な性能限界に 近い制御器が得られる。最後に GKYP 設計法にて設計され た制御器と文献®で示されているゲイン安定化補償器と位 相安定化補償器が独立に設計した制御器を比較することで 本手法の有効性を示す。

2. 制御対象モデル

HDD のヘッド位置決め機構系においては制御対象モデ ル *P_c*(*s*) は式 (1) のように仮定する⁽⁸⁾。

$$P_{c}(s) = e^{-sT_{d}} K_{p} \sum_{i=1}^{N} \frac{\kappa_{i}}{s^{2} + 2\zeta_{i}\omega_{i} + \omega_{ni}^{2}}$$
(1)

ここで K_p は定数ゲイン、N はモデリングに用いるモード 数、 κ_i は各モードのモード影響定数、 ω_i は各モードの固有 振動数、 ζ_i は各モードの減衰係数、 T_d はむだ時間である。 なお、i = 1 のモードは剛体モードと呼ばれる。各パラメー タを表 1 に示す⁽⁸⁾。この制御対象モデルに対してむだ時間 を含む零次ホールドにより離散化したものを制御対象モデ ルとする。一例として、サンプリング周期 $T_s = 50\mu s$ 及び むだ時間 $T_d = 15\mu s$ の時の制御対象モデル $P_d[z]$ のボーデ 線図及びナイキスト線図を図 1 に示す。

Fig. 1. Frequency characteristics(discretized plant)

3. 制御器設計手法

〈3·1〉 制御器に求められる制御特性 HDD 位置決め 制御においては制御器が次に示す特性を持つ必要がある。

サーボ系を構成するための積分特性

●剛体モードを安定化するための位相進み特性

各共振モードを安定化するゲインまたは位相安定化特性である⁽⁸⁾。そのため、制御器 C[z] は式(2) となる。

$$C[z] \coloneqq C_l[z]C_s[z] \tag{2}$$

ここで、*C*_{*l*}[*z*] は積分特性を持つ制御器、*C*_{*s*}[*z*] は剛体モード及び各共振モードを安定化するための安定化制御器である。本稿では、サーボ系を構成するための積分特性に対しては適切な周波数領域不等式を与えて GKYP 補題にて制御器設計することが難しかったため、極配置を用いることにより設計を行っている。

〈3・2〉 極配置を用いた PID 制御器 $C_l[z]$ の設計 サー ボ系を構成するための積分特性に対しては連続時間の剛体 モードに対しての極配置により制御系設計を行う。本稿で は式 (3) で表される PID 制御器を用い、連続時間の剛体モー ドに対して閉ループ極 ω_p に4 重極配置する。

$$C_l(s) = \frac{K_l(s+\beta_1)(s+\beta_2)}{s(s+\alpha_1)}$$
(3)

ここで K_l, α_1, β_1 及び β_2 は閉ループ極 ω_p により決まる従 属変数である。設計された連続時間 PID 制御器 $C_l(s)$ は Tustin 変換にて離散化を行い、離散時間 PID 制御器 $C_l[z]$ としている。

〈3·3〉 安定化補償器 *C*_s[*z*]の定義 式(4)に示す安定 化補償器 *C*_s(*s*) を GKYP 補題を用いて同時最適化を行う。

$$C_s(s) \coloneqq C_m(s)C_h(s) \tag{4}$$

$$C_m(s) \coloneqq \frac{s+\beta}{s+\alpha} \tag{5}$$

$$C_h(s) := \prod_{k=2}^{4} \frac{N_k(s)}{s^2 + 2\zeta_k \omega_{dk} + \omega_{dk}^2}, \quad 0 < \zeta_k < 1$$
(6)

ここで第一項 $C_m(s)$ は剛体モードを位相安定化する補償器、 第二項 $C_h(s)$ は各共振モードを安定化する補償器である。 ここで $C_h(s)$ は分子多項式 $N_k(s)$ を式(7)、(8)及び(9)の

Fig. 2. Bode plots of general stabilization compensators

ように取ることで複素極を持つ位相進み補償器、位相遅れ 補償器及びノッチフィルタとして動作する2次の制御器で ある⁽⁹⁾。

位相進み補償器として動作する $N_k(s)$

$$N_k(s) = s^2 + 2\zeta_k w_{nk} s + w_{nk}^2, \quad w_{nk} < w_{dk}$$
(7)

位相遅れ補償器として動作する $N_k(s)$

$$N_k(s) = s^2 + 2\zeta_k w_{nk} s + w_{nk}^2, \quad w_{nk} > w_{dk}$$
(8)

ノッチフィルタとして動作する $N_k(s)$

$$N_k(s) = s^2 + d2\zeta_k w_{dk}s + w_{dk}^2, \quad 0 < d < 1$$
(9)

図2に各 $N_k(s)$ に対応するボーデ線図を示す。ここで $N_k(s)$ は GKYP 補題により各共振モードを安定化しつつ帯域を最 大化するよう自動的に設計されるため、設計者が予め決める 必要はない。一方、GKYP 設計法では分母多項式も最適化 変数に選ぶと、凸最適化問題とならず数値的に解を求めるこ とが難しい。そのため分母多項式に関しては自動最適化を 行わず、設計者が予め与えておく。本稿では各共振モード に対して位相補償及びゲイン補償を行う必要が有ることを 考慮し、ζ_k = 0.3(k = 2,3,4) 及び ω_{nk} は制御対象の共振モー ド周波数 ω_k と等しく設計した。また、 α に関しては最終的 に達成したい制御帯域以上かつナイキスト周波数以下にな る範囲にて選ぶ必要がある。本稿では α = 8000 × 2π[rad/s] とした。 $C_s(s)$ は、連続時間と離散時間での分母極の位置が 変わらないよう、それぞれ個別に対応する周波数 ω_{dk}の値 に応じてプリワープ処理付き Tustin 変換にて離散化を行っ た。ここで離散化後の制御器 C_s[z] は式 (10) となる。

$$C_{s}[z] = \frac{b_{0} + b_{1}z^{-1} + \dots + b_{7}z^{-7}}{a_{0} + a_{1}z^{-1} + \dots + a_{7}z^{-7}}$$
(10)

ここで *a_i* は離散化により決まる既知の分母多項式係数であり、*b_i* は GKYP 補題を用いて最適化される未知の探索変数である。

〈3・4〉 安定化補償器 *C*_s[*z*] を最適化する LMI の導出 GKYP 補題とは有限周波数に対する周波数領域不等式 (Frequency Domain Inequality : FDI) と等価な線形行列不等式 (Linear Matrix Inequality : LMI)を導く定理である⁽⁵⁾⁽⁶⁾。本 稿では式 (10) にて定義された安定化補償器を GKYP 補題 を用いてゲイン及び位相により各共振モードを安定化しつ つ、所望のゲイン余裕、位相余裕及びゲイン交叉周波数を 達成するよう直接設計する。

〈3・4・1〉第一位相余裕及びゲイン交叉周波数を特徴づけるFDI ゲイン交叉周波数ωmは開ループ伝達関数が 0dBを横切る周波数である。これはナイキスト線図上で原 点を中心とする半径1の円との交点である。本稿ではゲイン交叉周波数を制御帯域と定義している。また第一位相余 裕φmはゲイン交叉周波数での実軸負方向からの回転角度 で定義する。ここで式(11)で現れるFDIは、開ループ伝達 関数が所望の第一位相余裕φm1及びゲイン交叉周波数ωm を満たす条件を表す。

$$|L(j\omega) - G_c| \le r_m, \ \underline{\omega}_m \le \omega \le \overline{\omega}_m \tag{11}$$

ここで、

$$G_c := -\cos \phi_{m1} - j \sin \phi_{m1},$$
$$\underline{\omega}_m := \omega_m - \Delta \omega_1, \ \overline{\omega}_m := \omega_m + \Delta \omega_1$$

であり、*r_m* は円の半径を表す正の定数である。図 3(a) にナ イキスト線図上にて FDI により表現される領域を示す。

〈3・4・2〉 感度関数のピーク低減を特徴づける FDI ナイキスト平面上における点 [-1,0] から一巡伝達関数 *L*(*j*ω) までの距離を *R*(*j*ω) とすると、*R*(*j*ω) と感度感数の間には次の関係がある⁽⁴⁾。

$$|S(j\omega)| = \frac{1}{|R(j\omega)|} \tag{12}$$

そのため、式 (13) で表される FDI を考えることにより感度 関数のピークを低減する。

$$\operatorname{Im}[L(j\omega)] \leq (\tan\theta)\operatorname{Re}[L(j\omega)] + \tan\theta \cdot \cos\phi_{m1} - \sin\phi_{m1},$$
$$\omega_m \leq \omega \leq \omega_m + \Delta\omega_2 \qquad (13)$$

この FDI は、点 *G_c* を通り、傾き *θ* の直線の下側領域を表 す (図 3(b))。

〈3·4·3〉 第二位相余裕を特徴づける FDI 第二位相 余裕 ϕ_{m2} は 2 回目のゲイン交叉周波数にて定義されている ため、次の FDI を考えることにより第二位相余裕を確保 する。

$$-\cos\phi_{m2} \le \operatorname{Re}[L(j\omega)], \ \omega_3 \le \omega \tag{14}$$

この FDI を図示すると図 3(c) となる。主共振モード (*i* = 2 のモード)に対しての安定性はこの第二位相余裕にて評価 する。

〈3・4・4〉 各共振モードに対して安定化を特徴づける FDI 節〈3・4・2〉で述べたように一巡伝達特性がナイキスト線図 上にて点 [-1,0] から遠ざかるほど各共振モードに対して安 定である。そこで式 (15) で表される FDI を各共振モード に対しての安定化条件とする。

$$r_s \leq \operatorname{Re}[L(j\omega)], \ \omega_4 \leq \omega$$
 (15)

この FDI を図示すると図 3(d) となる。主共振モード以外 の共振モードに対しての安定性はこの FDI にて評価する。

〈3・4・5〉 FDI から LMI への変換 式(11)(13)(14) 及 び(15) にて表される FDI は GKYP 補題を用いることで等 価な LMI に変換出来る。なお、GKYP 設計法では既知の システム $G_1[z]$ と状態表現した際の B,D 行列に未知変数 を含むシステム $G_2[z]$ が直列に接続されている際には可解 な LMI となる⁽⁶⁾。そのため、今回は $G_1[z] = C_l[z]P_d[z]$ 、 $G_2[z] = C_s[z]$ として GKYP 補題を適用した。そのため LMI を解くことにより開ループ伝達関数 $L(j\omega)$ が各 FDI を満たすよう安定化補償器 (10) のパラメータ係数 b_i を求め ることが出来る。なお設計者が FDI を設定することで FDI から LMI への変換及び求解は自動化出来るため、設計者が 煩雑な行列操作を行う必要はない⁽¹⁰⁾。GKYP 補題を用いた LMI の導出例は本稿の付録に示す。

4. 安定化補償器の設計

本節では文献⁽⁸⁾ に示されている HDD ベンチマーク問題 にて GKYP 補題を用いた位相安定化補償器及びゲイン安 定化補償器を設計する。プログラムは Matlab 上で実行し、 LMI の記述には Yalmip⁽¹¹⁾ を、LMI ソルバには Mosek⁽¹²⁾ を用いた。

〈4・1〉 制御器の設計結果 本稿では制御器の性能仕様は下記の条件を用いて与え、以下の仕様を満たしつつ制御帯域を最大化するよう設計する。

- ゲイン余裕 5dB 以上
- •第一位相余裕 30 度以上
- •第二位相余裕 40 度以上
- ●感度関数のピーク 8dB 以下
- 共振モードの安定化条件(式(15))を満たす

なお低域の性能仕様として節 $\langle 3 \cdot 2 \rangle$ の閉ループ極 ω_p を 400 × 2 π [rad/s] とした。なお、以下の解析にて位相遅れの 影響が違う 2 つの場合を考え、その時のサンプリング周期 として文献⁽⁴⁾で示されているサンプリング周期 $T_s = 50[\mu s]$ と、より早いサンプリング周期 $T_s = 10[\mu s]$ の例を扱う。

〈4・1・1〉 サンプリング周期 $T_s = 50[\mu s]$ の場合 まず FDI に必要なパラメータを決める。 ω_m 及び θ 以外のパラ メータは微調整の必要がないため、 $\omega_m = 1000 \times 2\pi [rad/s],$ $\theta = 50[deg]$ を用いて他のパラメータは予め設定し、以下で は固定の値を用いた。式 (11)-(15) に用いた FDI パラメー タを表 2 に示す。ここで式 (11)-(15) で表される FDI に対 応する LMI を連立させて制御器を設計する。表 2 の値を 用いることで、制御器は第一位余裕、第二位位相余裕の性 能仕様を満たしつつ、全ての共振モードが安定化される。 そのためその他の性能仕様であるゲイン余裕及び感度感数

Fable 2.	Design	Parameters	of LM	I Conditions
----------	--------	------------	-------	--------------

FDI (11)	
1st phase margin ϕ_{m1} [deg]	30
crossover frequency ω_m [rad/s]	$1200 \times 2\pi$
r _m	0.001
$\Delta \omega_1$ [rad/s]	$0 \times 2\pi$
FDI (13)	
$\theta_l[deg]$	55
$\Delta \omega_2$ [rad/s]	$700 \times 2\pi$
FDI (14)	
2nd phase margin ϕ_{m2} [deg]	40
ω_3 [rad/s]	$3000 \times 2\pi$
FDI (15)	
r _s	-0.3333
ω_4 [rad/s]	$4000 \times 2\pi$

のピークが性能仕様を満たしつつ制御帯域が最大となるよ う ω_m 及び θ の調整を行った結果、 $\omega_m = 1200 \times 2\pi [rad/s]$ 、 θ_l = 55[deg]の時に性能仕様を満たしつつ帯域が最大となっ た。文献⁽⁸⁾(p.111の設計例3)に示されている i=3の共振 モードに対して予めノッチフィルタを設計し、その後に帯域 を最大化するよう位相進み遅れ補償器を調整する手法を従 来法とした比較結果を図4に示す。図4から従来法とほぼ 同等な制御性能を持つ制御器が得られている。また図 4(c) から従来法より低周波数及び制御帯域にて高ゲイン化出来 ている。図 4(b) には設計された開ループ伝達関数と FDI が 示す領域を可視化しており、一巡伝達関数が FDI の制約を 満たすよう制御器が自動設計されていることが確認出来る。 なお、FDIの仕様を変更することで容易に制御器の再調整が 可能である。一巡伝達特性を表している図 4(d) から i = 2,3 及び4の共振モードに対して安定化制御器の構造を持たせ た状態で GKYP 補題にて制御帯域を最大化を行うと、モー ド影響定数が負のモードに対してはノッチフィルタを用い ず、モード影響定数が正のモードに対してはノッチフィル タを用いた設計法が最も広帯域化できるという結果を得た。 これは図1からサンプリング周波数 T_s = 50µs にて生じる むだ時間によりモード影響定数が負のモードが既に位相安 定化されているためであり、この知見は先行研究で得られ ている結論と一致する ®。更に従来法との比較結果により、 感度関数の最大値を低減しつつ従来よりも広帯域な安定化 制御器が得られた。性能仕様の比較結果を表3に示す。

〈4・1・2〉 サンプリング周期 $T_s = 10[\mu s]$ の場合 次に サンプリング周期を $T_s = 10[\mu s]$ に変更した場合に同様の 条件で帯域最大化を行った設計例を図6に示す。この場合、 図5に示すように零次ホールドによる位相遅れが小さいた めモード影響定数が負の共振モードが十分に位相安定化さ れない。そのため、それぞれの共振モードに対して適切に 安定化を行う必要がある。この時、従来法1としてi=3,4

Fig. 3. Graphical expression of FDI conditions in Nyquist diagram

Fig. 4. Simulation result 1(sampling period $T_s = 50[\mu s]$)

m 11 0	0	•	1.	c	1 .	1
Table 4	(om	naricon	reculte	ot.	decian	
Table 5.	COIII	Darison	results	UI.	ucsien	1
		F				

	conv.	prop.
crossover frequency	1150Hz	1200Hz
gain margin	4.94dB	5.23dB
1st phase margin	30.4deg	30.0deg
2nd phase margin	62.0deg	42.6deg
$ S(j\omega) _{\infty}$	8.43dB	7.97dB
$ T(j\omega) _{\infty}$	6.01dB	5.90dB

の共振モードに対して予めノッチフィルタを設計し、その 後、 $C_m[z]$ をGKYP補題にて設計仕様を満たすよう最適化 したものとする。従来法2はi = 2, 3, 4の共振モードに対し て予めノッチフィルタを設計し、同様に $C_m[z]$ を GKYP 補 題にて最適化したものである。予め設計したノッチフィル タは文献⁽⁸⁾ と同様のものを用いた。なお、モード影響定数 i = 3 の共振モードに対してのみノッチフィルタを設計し、 帯域最大化した際には、i = 4 の共振モードを式 (15) を満た すよう安定化出来ず、帯域が十分上がらなかったことから記 載していない。提案法である GKYP 補題を用いて、同様に ω_m 及び θ を調整した結果、 $\omega_m = 1390[rad/s], \theta = 53[deg]$ の時に帯域が最大となった。制御器の特性及び最終的に達 成された開ループ伝達関数に対する考察のために、開ルー プ伝達関数のナイキスト線図の拡大図及び制御器の周波数 特性の拡大図を図7 に示す。図7(a) ではナイキスト線図上 で各共振モード周波数 ω_3, ω_4 及び ω_5 がどの点に対応する

Fig. 5. Frequency characteristics of plant with $T_s = 10[\mu s]$

かを明確化するために記号 ₀, ◊ 及び * を用いて表記してい る。従来法1では帯域を上げていくと、第二位相余裕が確 保できず、1300Hz までしか広帯域化出来なかった。そのた め、主共振モードの安定化が帯域の制限となっていること が分かる。一方、従来法2では帯域を上げていくと、感度感 数のピークが性能仕様を満たすことが出来ず、1230Hz まで しか広帯域化出来なかった。これは主共振モードに対する ノッチフィルタの位相遅れが大きいためと考えられる。一 方、提案法では制御帯域での位相遅れが問題とならない程 度に主共振モードに対して弱いノッチフィルタが働いてい る。このことは図 7(b) において i = 2 の共振モード周波数 での従来法1及び提案法のゲインの差として見ることが出 来る。その結果として制御帯域での位相遅れの影響を少な くしながら、第二位相余裕を確保出来ている。また、i = 3,4 の共振モード周波数においても図7(a)から、従来法1及び 2よりもハイゲインであるにも関わらす、不安定点 [-1,0*i*] から離れる方向に位相特性が自動調整されている。そのた めに式(15)で表される FDI を満たしており、十分に安定 化出来ている。つまりサンプリング周波数やむだ時間によ る位相遅れが少ない場合、負の共振モードに対して必ずし も強いノッチフィルタは必要とならない。図 7(a) から、提 案法では i = 5 の共振モード周波数においても従来法1及 び2よりハイゲイン化が行われている。このように同時最 適化を行うことで、それぞれの共振モードに対応する安定 化制御器の干渉を考慮してゲイン特性及び位相特性を自動 的に最適化出来る。最終的に達成された性能仕様の比較結 果を表4に示す。表4から性能仕様を満たしつつ広帯域化 出来ていることが確認出来る。

〈4・2〉 GKYP 補題を用いた設計法の利点 GKYP 補 題を用いた設計法は他の設計法と比較して次の利点がある。

達成可能な性能限界の明確化

GKYP 補題を用いた設計法では設定した FDI を満たすよう に制御器パラメータを設計するため、解が見つからなかっ た場合は、その制御器の構造でその性能仕様を満たす制御 器が存在しないことが保証できる。そのため理論的に実現 不可能な性能仕様を目標に制御器の調整を行っていた場合 でもどの性能仕様がボトルネックになっているかが把握し やすい。

	conv. 1	conv. 2	prop.
crossover frequency	1300Hz	1230Hz	1390Hz
gain margin	5.55dB	5.37dB	5.01dB
1st phase margin	30.4deg	31.5deg	30.1deg
2nd phase margin	41.5deg		44.8deg
$ S(j\omega) _{\infty}$	7.59dB	7.94dB	7.67dB
$ T(j\omega) _{\infty}$	5.72dB	5.57dB	5.80dB

多目的な性能仕様に対する調整しやすさ

GKYP 補題を用いた設計法では複数の FDI を満たす制御器 を数値的に探索するため、他の手法と比較して複数の性能 仕様がトレードオフの関係にある際でも制御器を設計しや すいという利点がある。

5. 結論と今後の課題

本稿では HDD ベンチマーク問題にて GKYP 補題を用い た安定化補償器の同時設計を行った。まず GKYP 補題では FDI 制約を課すことが難しかった低域での開ループ特性を 極配置を用いることに改善した。更に GKYP 補題を用いて 制御帯域が最大となるよう安定化補償器を同時に設計した 結果、モード影響定数が正及び負の共振モードに対して制 御帯域が最大となるよう適切に安定化制御器が自動的に設 計された。以前よりモード影響定数が正及び負の共振モー ドに対してゲイン安定化及び位相安定化を行うことで制御 帯域の広帯域化が可能であると精密位置決めの分野では知 られていたが、GKYP 補題という制御理論を用いることで も同様の結論を得た。またサンプリング周期やむだ時間の 影響での位相遅れが小さい場合にはそれぞれの共振モード に対する帯域最大化のために最適な安定化手法が違うこと を明らかにした。

謝 辞

本研究は日本学術振興会(JSPS)科研費特別研究員奨励 費 JP15J08374 の助成を受けたものである。研究支援に感 謝致します。

文 献

- Y. Maeda and M. Iwasaki, "Circle condition-based feedback controller design for fast and precise positioning," *IEEE Transactions on Industrial Electronics*, vol. 61, pp. 1113–1122, 2014.
- (2) T. Atsumi, "Emerging technology for head-positioning system in hdds," *IEEJ Journal of Industry Applications*, vol. 5, no. 2, pp. 117–122, 2016.
- (3) T. Atsumi and W. C. Messner, "Optimization of head-positioning control in a hard disk drive using the RBode plot," *IEEE Transactions on Industrial Electronics*, vol. 59, no. 1, pp. 521–529, 2012.
- (4) T. Atsumi, T. Arisaka, T. Shimizu, and T. Yamaguchi, "Vibration servo control design for mechanical resonant modes of a hard-disk-drive actuator," *JSME international journal. Series C, Mechanical systems, machine elements and manufacturing*, vol. 46, pp. 819–827, 2003.
- (5) T. Iwasaki and S. Hara, "Generalized KYP lemma: Unified frequency domain inequalities with design applications," *IEEE Transactions on Automatic Control*, vol. 50, no. 1, pp. 41–59, 2005.
- (6) S. Hara, T. Iwasaki, and D. Shiokata, "Robust pid control using generalized

Fig. 6. Simulation result of design 2(sampling period $T_s = 10[\mu s]$)

(a) Nyquist plots of design 2(magnified view)

(b) Frequency characteristics of controller(magnified view)

Fig. 7. Frequency characteristic analysis of design 2

kyp synthesis: direct open-loop shaping in multiple frequency ranges," *IEEE Control Systems*, vol. 26, pp. 80–91, 2006.

- (7) T. Zanma, M. Morimoto, and K. Yubai, "Suppression of harmonic current for IPMSM using generalized repetitive control," *IEEJ Journal of Industry Applications*, vol. 3, no. 3, pp. 214–220, 2014.
- (8) 山口高司,平田光男,藤本博志,"ナノスケールサーボ制御-高速高精度 に位置を決める技術,"東京電機大学出版局,2007.
- (9) W. C. Messner, M. D. Bedillion, L. Xia, and D. C. Karns, "Lead and lag compensators with complex poles and zeros design formulas for modeling and loop shaping," *IEEE Control Systems*, vol. 27, pp. 44–54, 2007.
- (10) D. Shiokata, S. Hara, and T. Iwasaki, "From nyquist/bode to gkyp de-

sign: design algorithms with cacsd tools," in SICE 2004 Annual Conference, vol. 2, pp. 1780–1785 vol. 2, 2004.

- (11) J. Lofberg, "Yalmip: a toolbox for modeling and optimization in matlab," in *Computer Aided Control Systems Design*, 2004 IEEE International Symposium on, pp. 284–289, 2004.
- (12) M. ApS, *The MOSEK optimization toolbox for MATLAB manual. Version* 7.1 (Revision 41)., 2015.

付 録

1. GKYP 補題による FDI と等価な LMI の導出方法 本節では FDI から LMI の導出方法を FDI(11) を例に述 べる。

GKYP 補題では FDI は FDI から導かれる行列 Φ, Ψ, Π に て特徴づけられ、例えば式(11)で表される FDI に対しては、

$$\Phi = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad (七 1)$$

$$\Psi = \begin{bmatrix} 0 & e^{j\omega_m T_s} \\ e^{-j\omega_m T_s} & -2\cos(\Delta\omega_1) \end{bmatrix}, \quad (\'{1} 2)$$

$$\Pi = \begin{bmatrix} \Pi_{11} & \Pi_{12} \\ \Pi_{12}^* & \Pi_{22} \end{bmatrix} = \begin{bmatrix} 1 & -G_c^* \\ G_c & |G_c|^2 - r_m^2 \end{bmatrix}$$
(付 3)

となる (%)。この行列 Φ,Ψ,Π は文献 (%) などに表として示され ているため、設計者が指定したい FDI に対応する行列を参照 すればよい。一巡伝達関数の状態空間表現を A_L, B_L, C_L, D_L とすると、制御器の分子多項式の係数 b_i は B_L, D_L のみに 現れる。ここで GKYP 補題により、式(付4)及び(付5)を 満たす Hermitian 行列 P,Q が存在する条件と、式(11) で表 される FDI が成立する条件が等価である。

$$\begin{bmatrix} W(P,Q) + V & \begin{bmatrix} B_L \\ D_L \end{bmatrix} \Pi_{11} \\ \Pi_{11} \begin{bmatrix} B_L \\ D_L \end{bmatrix}^* & -\Pi_{11} \end{bmatrix} \le 0$$
 (付 5)

ただし、

$$W(P,Q) \coloneqq \begin{bmatrix} A_L & I \\ C_L & 0 \end{bmatrix} (\Phi^T \otimes P + \Psi^T \otimes Q) \begin{bmatrix} A_L & I \\ C_L & 0 \end{bmatrix}^*,$$

$$V := \begin{bmatrix} 0 & B_L \Pi_{12} \\ [B_L \Pi_{12}]^* & \text{He}[D_L \Pi_{12}] + \Pi_{22} \end{bmatrix}.$$

そのため式 (付 4) 及び (付 5) を満たす Hermitian 行列 P.O 及び制御器の分子多項式 bi を含む行列 BL, DL を数値的に 計算すればよい。

兼 松 正 人 (学生員) 1988 年 5 月 29 日生。2012 年 3 月東 京大学工学部電子情報工学科卒業。2014年3月 東京大学新領域創成科学研究科先端エネルギーエ 学卒業。2014年3月東京大学大学院工学系研究 科電気系工学(博士課程)に入学。現在、主とし てモータの電磁力モデルに基づく音振動抑制制御 理論、先進的制御理論を応用した精密位置決めの ための制御理論の研究に従事。2015年4月より

日本学術振興会(JSPS)特別研究員(DC2)。

藤本博志(上級会員) 1974年2月3日生。2001年東京大

学大学院工学系研究科電気工学専攻博士課程修了。 博士(工学)。同年長岡技術科学大学工学部電気系 助手。2002 年~2003 年, 米国 Purdue 大学工学部 機械工学科客員研究員。2004 年横浜国立大学大 学院工学研究院講師。2005年同助教授,2007年 同准教授。2010年東京大学大学院准教授。制御 工学, モーションコントロール, マルチレート制

御、ナノスケールサーボ、電気自動車の運動制御、モータとインバー タの高性能制御, ビジュアルサーボに関する研究に従事。2001 年およ び 2013 年 IEEE Trans. IE 最優秀論文賞, 2010 年 Isao Takahashi Power Electronics Award, 2010年計測自動制御学会著述賞, 2016年永守賞大 賞などを受賞。IEEE Senior Member, 計測自動制御学会, 日本ロボッ ト学会,自動車技術会,各会員。