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Abstract— A plant with unstable zeros is considered to be
difficult to control because of initial undershoot of step response
and unstable poles of its inversion system. A plant may have
unstable zeros in discrete time domain because of following
reasons: 1) non-collocation of actuators and sensors and 2)
discretization by zero-order hold. We proposed a solution
for these problems by using a multirate feedforward control
with state trajectory generation based on time axis reversal.
However, this method requires preactuation for negative infinite
time. This paper proposes a state trajectory regeneration
method via redundant order polynomial for the negative finite
time. Although this method abandons perfect tracking during
preactuation, it guarantees perfect tracking for a positive time
domain. Moreover, the tracking error during finite time preac-
tuation is reduced by the regenerated state trajectory obtained
by the optimized redundant order polynomial. The validity of
the proposed method is demonstrated through simulations.

I. Introduction

A plant with unstable zeros is known to be difficult to
control because of unstable poles of its inversion system and
initial undershoot of step response, as shown in Fig. 1. The
zeros of the discretized transfer function can be classified as
follows [1][2]: 1) intrinsic zeros and 2) discretization zeros
[3]. Intrinsic zeros correspond to zeros of the continuous time
transfer function. The others are called discretization zeros.
Discretization zeros are unstable when the relative order of
the continuous time plant is greater than two even without
continuous time unstable zeros [3].

To design a stable feedforward controller for a plant
with unstable zeros, approximated inversion-based feedfor-
ward controllers are proposed: for example, nonminimum-
phase zeros ignore (NPZI) [4], zero-phase-error tracking
controller (ZPETC) [5], and zero-magnitude-error tracking
controller (ZMETC) [6]. These controllers handle aforemen-
tioned problems 1) and 2) simultaneously because they are
designed using discretized transfer functions.

Compensation methods have been proposed for unstable
intrinsic and discretization zeros through preactuation and
preview [7][8]. In addition, these methods compensate for
intrinsic and discretization zeros simultaneously. A continu-
ous time domain approach was proposed in [9]. This method
solves the differential equation in a continuous time domain;
however, the reference trajectory must be defined by an
equation in the positive time domain.
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Fig. 1. Step response comparison. P1 is a first order transfer function
without an unstable zero. P2, P3, and P4 have one, two, and three unstable
zero(s), respectively. Step responses of the system with unstable zero(s)
creates undershoot.

Our previous paper [10] proposes a method to solve
problems 1) and 2) separately. The unstable zeros in the
continuous time transfer function are managed through a
state trajectory generation based on time axis reversal and
preactuation commands. This method can be applied for any
reference trajectory, given its n − 1 th derivative. Here, n
denotes the order of the plant in the continuous time transfer
function. Next, the plant discretization problem is solved
through the multirate feedforward control [11]. However, this
method requires preactuation of negative infinite time.

This paper proposes a finite time preactuation method
based on state trajectory regeneration by using a redundant
polynomial in the negative time domain. By using the state
trajectory regeneration and the finite time preactuation with
multirate feedforward, the initial state variable of the plant
can be matched with the desired initial state. Although
this method abandons perfect tracking for the reference
trajectory r during preactuation, it guarantees perfect tracking
for the positive time domain. The tracking error during
preactuation is reduced by the regenerated state trajectory
obtained through the optimized redundant order polynomial.
The validity of the proposed method is demonstrated through
simulations.

II. Preactuation Perfect Tracking Control [10]

We proposed a preactuation perfect tracking control
(PPTC) method in [10] to design a stable inversion feed-
forward controller for plants with unstable intrinsic and
discretization zeros. This method solves the unstable zeros
inversion problem in two steps. The stable inversion for
unstable intrinsic zeros generated through continuous time
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Fig. 2. Multirate feedforward control with state trajectory generation based on time axis reversal [10]. S, H , and L denote a sampler, holder, and lifting
operator [12], respectively. z and zs denote esTr and esTu , respectively.

unstable zeros are calculated using a time axis reversal in
a continuous time domain. The stable inversion for unstable
discretization zeros are calculated using a multirate feedfor-
ward proposed in [11].

A. Plant definition

A nominal plant in a continuous time domain is defined
as a controllable canonical form:

Pc(s) =
B(s)
A(s)

=
bmsm + bm−1sm−1 + · · · + b0

sn + an−1sn−1 · · · + a0
, (1)

ẋ(t) = Acx(t) + bcu(t), (2)
y(t) = ccx(t), (3)

where

x =



x1

x2

...

xn


, Ac =



0 1 0 · · · 0

0 0 1 · · · 0

. . .

−a0 −a1 −a2 · · · −an−1


bc =

[
0 0 · · · 1

]T
cc =
[
b0 b1 · · · bm 0 · · · 0

]
.

(4)

B(s) and A(s) are respectively the numerator and denomina-
tor of Pc(s). n and m (< n) denote the nominal plant order
and number of the zeros, respectively. The discretized plant
by zero-order hold with sampling time Tu is defined as

x[k + 1] = Asx[k] + bsu[k], y[k] = csx[k] (5)

As = eAcTu , bs =

∫ Tu

0
eAcτbcdτ, cs = cc. (6)

B. State trajectory xd generation

According to Eq. (3), to track the reference position
trajectory r(t), the desired state trajectory xd should satisfy

r(t) = ccxd(t). (7)

Here, the reference trajectory vector is prepared as follows:

r(t) =
[
r1(t) r2(t) · · · rn(t)

]T
=
[
1 d

dt · · · dn−1

dtn−1

]T
r(t)

(8)

Next, the state trajectory xd(t) is generated from r(t) by
using controllable canonical form characteristics. To prevent
the diversion of the state trajectory r(t), the stable-unstable
decomposition and time axis reversal technique is used.

1) Stable-unstable decomposition: B(s)−1 is decomposed
into a stable part Fst(s) and an unstable part Fust(s) as
follows:

B(s)−1 = Fst(s) + Fust(s) (9)
f st(t) = L̄−1

[
Fst(s)

]
, f̄ ust(t) = L̄−1

[
(−1)lFust(−s)

]
,(10)

where l denotes the order of Fust(s). Note that Fust(−s) is
stable.

2) Stable part state trajectory generation: The desired
state trajectory xst

d (t) for the stable part is forwardly generated
as follows.

xst
d (t) =

[
xst

1d(t) xst
2d(t) · · · xst

nd(t)
]T

=

∫ t

−∞
f st(t − τ)r(τ)dτ (11)

3) Unstable part state trajectory generation: The desired
state trajectory xust

d (t) for unstable part is generated by

xust
d (t) =

[
xust

1d (t) xust
2d (t) · · · xust

nd (t)
]T

=

∫ t̄

−∞
f̄ ust(t̄ − τ̄)r(−τ̄)dτ̄

∣∣∣∣
t̄=−t
. (12)

xust
d (t) is calculated as follows. First, a convolution of the time

reversed reference position trajectory r(−t̄) and the stable
signal f̄ ust(t̄) is calculated. Next, the time axis is reversed.
The mathematical proof is provided in [13][14].

4) State trajectory generation: The state trajectory xd(t)
is obtained by

xd(t) = xst
d (t) + xust

d (t). (13)

C. Feedforward output uo generation from xd

The effect of unstable discretization zeros can be avoided
using the multirate feedforward control [11]. Fig. 2 shows
that there are three time periods Ty, Tu, and Tr denoting the
periods for y(t), u(t), and r(t), respectively. These periods are
set as Tr = nTu = nTy.

The multirate system of (5) is given as

x[i + 1] = Ax[i] + Bu[i], y[i] = cx[i], (14)
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where

A = An
s , B =

[
An−1

s bs An−2
s bs · · · Asbs bs

]
c = cs, x[i] = x(iTr)

(15)

by calculating the state transition from t = iTr = kTu to
t = (i + 1)Tr = (k + n)Tu. Here, the input vector u[i] is
defined in the lifting form

u[i] =
[
u1[i] u2[i] · · · un[i]

]T
=
[
u(kTu) u((k + 1)Tu) · · · u((k + n − 1)Tu)

]T
(16)

According to Eq. (14), the feedforward output uo[i] is
obtained from the previewed state trajectory xd[i + 1] as
follows:

uo[i] = B−1(I − z−1 A)xd[i + 1], (17)

where z = esTr .

III. Preactuation truncation problem

The method introduced in section II requires preactuation
for −∞ < t ≤ 0. In practice, infinite preactuation is
impossible. In this section, a simple preactuation truncation
is considered.

uo[k] =

0 (k < − tpa

Tu
)

uo[k] (otherwise)
, (18)

where tpa denotes the length of the preactuation time.
However, this method cannot achieve a perfect tracking for

not only −tpa < t < 0 but also 0 ≤ t because the actual initial
state variable x[0] does not match the initial state trajectory
xd[0]. This result will be shown in section V-B and in Fig.
5 and Fig. 6.

IV. Finite preactuation method by state trajectory
regeneration

This paper proposes a state trajectory regeneration method
via redundant order polynomial in the negative time domain.
Although this method abandons perfect tracking for −tpa <
t < 0, it guarantees perfect tracking for 0 ≤ t because it can
match xd(t) and x(t). The tracking error of −tpa < t < 0
is reduced by the regenerated state trajectory obtained using
the optimized redundant order polynomial.

As shown in section II-A, the plant is realized through the
controllable canonical form

xreg
d (t) =

[
xreg

1d (t) xreg
2d (t) · · · xreg

jd (t)
]T
,

xreg
jd (t) =

d j−1

dt j−1 xreg
1d (t) (19)

where xreg
d denotes the regenerated state trajectory.

The proposed method consists of the following steps.

A. Boundary condition calculation

The boundary condition for −tpa ≤ t ≤ 0 is given as

xreg
d (−tpa) = O, xreg

d (0) = xd(0), (20)

where xust
d (0) is calculated using Eq. (13). x(t) = O (t < −tpa)

is assumed without loss of generality.

B. State trajectory xreg
1d (t) definition

xreg
d (t) (−tpa ≤ t ≤ 0) is defined using the ntth order

polynomial as

xreg
1d (t) = VTv +WTw (21)

Tv =
[
1 t t2 · · · t2n−1

]T
Tw =

[
t2n t2n+1 · · · t2n−1+nr

]T
V =

[
v0 v1 · · · v2n−1

]
W =

[
w1 w2 · · · wnr

] , (22)

where n and nr (0 ≤ nr ∈ Z) denote the orders of the plant
and generated trajectory redundancy, respectively. The order
of the trajectory nt is expressed using nt = 2n−1+nr because
the number of the boundary condition is 2n considering the
plant order is n.

C. Evaluation function definition

By simultaneously solving the equations (20) and (21),
x1d(t) can be expressed through only W and t. Eq. (4) shows
that the desired output yd(t,W) is calculated as

yd(t,W) = ccxreg
d (t,W)

= cc



xreg
1d (t,W)

d
dt xreg

1d (t,W)
d2

dt2 xreg
1d (t,W)
...

dn−1

dtn−1 xreg
1d (t,W)


(23)

Thus, the tracking error ed(t,W) is calculated as

ed(t,W) = r(t) − yd(t,W) (24)

In this paper, Eq. (25) is defined as an evaluation function:

g(W) =
∫ 0

−tpa

[
(ed(t,W))2 + kacc(ÿd(t,W))2

]
dt, (25)

where kacc (> 0) denotes a weighting coefficient to smoothen
yd(t,W).

D. Unconstrained optimization

The optimal coefficient is obtained by solving the follow-
ing unconstrained optimization problem:

∇g(W) = 0, ∇2g(W) > 0 (26)

E. Negative time state trajectory calculation

xreg
1d (t) is expressed by the nt = 2n − 1 + nr th polynomial

with optimized coefficients. xreg
d (t) is calculated using Eq.

(27) by considering Eq. (19).

xreg
d (t) =



xreg
1d (t)

xreg
2d (t)

xreg
3d (t)
...

xreg
(n−1)d(t)


=



xreg
1d (t)

d
dt xreg

1d (t)
d2

dt2 xreg
1d (t)
...

dn−1

dtn−1 xreg
1d (t)


(27)

4017



Table

Linear motor

Linear encoder

Air guide

Carriage

Linear encoder

(a) High-precision stage.

(measured)

(b) Model of (a).

Fig. 3. Experimental high-precision stage and its model for
simulation[15][16][17].

F. State trajectory generation

As abovementioned the state trajectory is obtained by

xd(t) =


O (t < −tpa)
xreg

d (t) (−tpa ≤ t ≤ 0)
xst

d (t) + xust
d (t) (0 < t)

. (28)

V. Simulation results

A. Simulation condition

This section describes the simulations performed using the
model illustrated in Fig. 3(b). This model assumes a high-
precision stage shown in Fig. 3(a). Here, the continuous time
domain transfer function is defined as

Pc(s) =
−(s − 140)(s + 100)

s(s + 2000)(s + 2)(s2 + 20s + 40000)
(29)

assuming that the transfer function from the current reference
of the x-axis actuator which generates force fx to the
measured stage position x. τ is defined as the time constant
of the unstable zero as

τ =
1

140
≃ 7.2 [ms]. (30)

The discretized transfer function of Eq. (29) with zero-order
hold is obtained as

Ps[zs] =
K(zs + 3.547)(zs − 1.014)(zs − 0.9900)(zs + 0.2543)

(zs − 1)(zs − 0.9998)(zs − 0.8187)(z2
s − 1.998zs + 0.998)

, (31)

with the sampling period Tu = 100 [µs]. zs denotes esTu .
Fig. 4 shows the Bode diagram of Pc(s). In the continuous
time domain, Pc(s) has a stable and an unstable zero. In the
discrete time domain, Ps[zs] has intrinsic zeros at zs = +0.99
and zs = +1.014, and discretized zeros at zs = −3.547 and
zs = −0.2543. Here, Ps[zs] has an unstable intrinsic zero and
an unstable discretized zero.

Fig. 5(a) shows the step target trajectory r(t) designed
using 9th-order polynomial during step motion. The step
time is set at 0.02 [s]. The weighting coefficient kacc is set
at 1.0 × 10−11.

B. Preactuation truncation problem

Fig. 5, 6, and 10(a) show the simulation results of pre-
actuation truncation for tpa = 70τ, 5τ, 4τ, and 3τ. When
tpa = 70τ, the output y(t) tracks the reference trajectory r(t)
because tpa = 70τ ≫ τ. However, for tpa = 5τ, 4τ, and
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Fig. 4. Bode diagram of Pc(s).

3τ cases, the output y(t) cannot track the reference for not
only −tpa < t < 0 but also 0 ≤ t. This is because of the
mismatch between the initial value of the state trajectory
x(0) and xd(0), as shown in Fig. 6 and 10(a).

C. Simulation results of the proposed method

Fig. 7–9, 10(b), and 11 show simulation results. Fig. 7(b),
8(b), and 9(b) show that perfect tracking is achieved in the
positive time domain in contrast to Fig. 5(b). Fig. 10(b)
shows proposed method can match the state variable to the
desired initial value at t = 0. Fig. 11 shows peak-to-peak
tracking error for −tpa < t < 0 is reduced by the increasing
order of the regenerated state trajectory.

These figures indicate that the length of the preactuation
tpa has a considerable impact on the reduction of tracking
error e(t) and peak of control input u(t) during preactuation.

D. Comparison with approximated inverse methods

Simulation results of NPZI method [4], ZPETC method
[5], and ZMETC method [6] are shown in Fig. 12. These
three methods are designed by sampling period Tu. The
ZPETC method uses a preview to achieve the zero-phase-
error characteristics.

These methods create an undershoot and/or overshoot to
compensate for the unstable intrinsic zero (zs = +1.014)
and unstable discretization zero (zs = −3.547). Therefore,
without preactuation, trade-offs exist between the undershoot
and/or overshoot amplitude and the settling time.

VI. Conclusion

In the discretized domain, a plant has two types of zeros:
1) intrinsic zeros, which have counterparts in the continuous
time domain, and 2) discretization zeros generated through
discretization. The feedforward control is thus difficult be-
cause of unstable pole(s) of its inversion system. According
to [10], the unstable intrinsic and discretization zeros can
be managed separately through the combination of multirate
feedforward and state trajectory generation with time axis
reversal. However, this method needs infinite time preactua-
tion.

This paper proposes a finite time preactuation method
based on state trajectory regeneration using a redundant
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Fig. 7. Finite preactuation method with redundant order polynomial trajectory (tpa = 3τ).
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Fig. 8. Finite preactuation method with redundant order polynomial trajectory (tpa = 4τ).
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Fig. 9. Finite preactuation method with redundant order polynomial trajectory (tpa = 5τ).
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Fig. 10. State trajectory output x1(t). State trajectory regeneration case can
match the state variable x(t) to the desired value at t = 0.
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Fig. 11. Magnified figures of r(t), y(t). Higher order trajectory and longer
tpa reduces peak-to-peak tracking error for −tpa < t < 0.

polynomial. The proposed method can achieve perfect track-
ing in the positive time domain. The tracking error in the
negative time domain is reduced by optimizing the coefficient
of the redundant order polynomial. Owing to the multirate
feedforward and controllable canonical form realization, the
proposed method can formulate the state trajectory during
preactuation as a polynomial. The polynomial defined trajec-
tory enables us to apply the optimization algorithm to reduce
tracking error. The effectiveness of the proposed method is
demonstrated through simulations.
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